Assessing interaction networks with applications to catastrophe dynamics and disaster management

In this paper, we present a versatile method for the investigation of interaction networks and show how to use it to assess effects of indirect interactions and feedback loops. The method allows to evaluate the impact of optimization measures or failures on the system. Here, we will apply it to the investigation of catastrophes, in particular to the temporal development of disasters (catastrophe dynamics). The mathematical methods are related to the master equation, which allows the application of the well-known solution methods. We will also indicate connections of disaster management with excitable media and supply networks. This facilitates to study the effects of measures taken by the emergency management or the local operation units. With a fictious, but more or less realistic example of a spreading epidemic disease or a wave of influenza, we illustrate how this method can, in principle, provide decision support to the emergency management during such a disaster.

[1]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[2]  Rainer Feistel,et al.  Evolution of complex systems : self-organization, entropy and development , 1989 .

[3]  H. Theil,et al.  Economic Forecasts and Policy. , 1959 .

[4]  J. Rogers Chaos , 1876 .

[5]  H. Theil,et al.  Economic Forecasts and Policy. , 1959 .

[6]  Claudio Margottini,et al.  Floods and Landslides: Integrated Risk Assessment , 1999 .

[7]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[8]  Joel E. Cohen,et al.  Paradoxical behaviour of mechanical and electrical networks , 1991, Nature.

[9]  Drossel Self-organized criticality and synchronization in a forest-fire model. , 1996, Physical review letters.

[10]  Eckart Zwicker,et al.  Simulation und Analyse dynamischer Systeme in den Wirtschafts- und Sozialwissenschaften , 1981 .

[11]  Stephanie Forrest,et al.  Email networks and the spread of computer viruses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  C. H. Waddington,et al.  Evolution and Consciousness: Human Systems in Transition , 1976 .

[13]  Erik Mosekilde,et al.  Deterministic chaos in the beer production-distribution model , 1988 .

[14]  Kim Christensen,et al.  Unified scaling law for earthquakes. , 2001, Physical review letters.

[15]  T Sugimoto,et al.  The impact of a catastrophic earthquake on morbidity rates for various illnesses. , 2000, Public health.

[16]  Robert Gilmore,et al.  Catastrophe Theory for Scientists and Engineers , 1981 .

[17]  Stefan Hergarten,et al.  Foreshocks and aftershocks in the Olami-Feder-Christensen model. , 2002, Physical review letters.

[18]  M. G. Shnirman,et al.  SIMPLE HIERARCHICAL SYSTEMS : STABILITY, SELF-ORGANIZED CRITICALITY, AND CATASTROPHIC BEHAVIOR , 1997 .

[19]  M. Cochrane Fire science for rainforests , 2003, Nature.

[20]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[21]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[22]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[23]  Tad Hogg,et al.  Communities of practice: Performance and evolution , 1994, Comput. Math. Organ. Theory.

[24]  R. W. Greene Confronting Catastrophe: A GIS Handbook , 2002 .

[25]  Dirk Helbing,et al.  Occurrence probabilities of stochastic paths , 1996 .

[26]  Gaite,et al.  Phase transitions as catastrophes: The tricritical point. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[27]  R. Gilmore,et al.  Catastrophe time scales and conventions , 1979 .

[28]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[29]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[30]  Scher,et al.  Geometric dispersion and unstable flow in porous media. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[31]  B. Huberman,et al.  Status Competition and Performance in Work Groups , 2000 .

[32]  Dirk Helbing,et al.  Experiments, Stochastic Description, Intermittency Control, and Traffic Optimization , 2002 .

[33]  V. I. Arnolʹd Bifurcation theory and catastrophe theory , 1994 .

[34]  A. K. Turner,et al.  Landslides : investigation and mitigation , 1996 .

[35]  Charles M. Close,et al.  Modeling and Analysis of Dynamic Systems , 1978 .

[36]  P. Blanchard,et al.  Epidemic spreading in a variety of scale free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Kagan Tumer,et al.  Collective Intelligence for Control of Distributed Dynamical Systems , 1999, ArXiv.

[38]  H. Risken Fokker-Planck Equation , 1984 .

[39]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[40]  Wolfgang Weidlich,et al.  Sociodynamics: a Systematic Approach to Mathematical Modelling in the Social Sciences , 2000 .

[41]  R. Pastor-Satorras,et al.  Epidemic spreading in correlated complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Wolfgang Weidlich,et al.  Physics and social science — The approach of synergetics , 1991 .

[43]  J. Schnakenberg,et al.  G. Nicolis und I. Prigogine: Self‐Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. J. Wiley & Sons, New York, London, Sydney, Toronto 1977. 491 Seiten, Preis: £ 20.–, $ 34.– , 1978 .

[44]  Jagbir Singh Disaster Management , 2000 .

[45]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[46]  S Trillo,et al.  Bifurcation of gap solitons through catastrophe theory. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  B A Huberman,et al.  Cooperative Solution of Constraint Satisfaction Problems , 1991, Science.

[48]  Marco Paolini,et al.  The story of Vajont , 2000 .

[49]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[50]  David Alexander,et al.  Principles of Emergency Planning and Management , 2002 .

[51]  George D. Haddow,et al.  Introduction to Emergency Management , 2003 .

[52]  Eric Bonabeau,et al.  Evolving Ant Colony Optimization , 1998, Adv. Complex Syst..

[53]  H C Tuckwell,et al.  Epidemic spread and bifurcation effects in two-dimensional network models with viral dynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  M G Shnirman,et al.  Scale invariance and invariant scaling in a mixed hierarchical system. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[56]  Alessandro Vespignani,et al.  Epidemic dynamics and endemic states in complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  M. Newman,et al.  Simple model of epidemics with pathogen mutation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  David A. Moss When All Else Fails: Government as the Ultimate Risk Manager , 2002 .

[60]  W. Waugh Living with Hazards, Dealing with Disasters: An Introduction to Emergency Management: An Introduction to Emergency Management , 2000 .

[61]  Robbins,et al.  Dynamical transition in quasistatic fluid invasion in porous media. , 1988, Physical review letters.

[62]  R. May,et al.  Infection dynamics on scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[64]  B. Hess,et al.  Isotropic cellular automaton for modelling excitable media , 1990, Nature.

[65]  David M. Pyle,et al.  Volcanoes: How did the summer go? , 1998, Nature.

[66]  Günter Radons,et al.  Nonlinear Dynamics of Production Systems , 2004 .

[67]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[68]  J. Christensen,et al.  Climate modelling: Severe summertime flooding in Europe , 2003, Nature.

[69]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[70]  D. Sornette,et al.  Occurrence of finite-time singularities in epidemic models of rupture, earthquakes, and starquakes. , 2001, Physical review letters.

[71]  Armin Bunde,et al.  The science of disasters : climate disruptions, heart attacks, and market crashes , 2002 .

[72]  Michelle Girvan,et al.  Optimal design, robustness, and risk aversion. , 2002, Physical review letters.

[73]  J A N Filipe,et al.  Solution of epidemic models with quenched transients. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Galal El Mahdy Disaster Management in Telecommunications, Broadcasting and Computer Systems , 2001 .

[75]  Christensen,et al.  Self-organized critical forest-fire model: Mean-field theory and simulation results in 1 to 6 dimenisons. , 1993, Physical review letters.

[76]  E. Meron Pattern formation in excitable media , 1992 .

[77]  Ramon Huerta,et al.  Contact tracing and epidemics control in social networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[79]  G. Woo The Mathematics of Natural Catastrophes , 1999 .

[80]  Vasilis N. Burganos,et al.  LATTICE BOLTZMANN SIMULATION OF NONIDEAL VAPOR-LIQUID FLOW IN POROUS MEDIA , 1998 .

[81]  Stephen J. Guastello,et al.  Chaos, Catastrophe, and Human Affairs: Applications of Nonlinear Dynamics To Work, Organizations, and Social Evolution , 1995 .

[82]  Loreto,et al.  Renormalization group approach to the critical behavior of the forest-fire model. , 1995, Physical review letters.

[83]  O. Bjørnstad,et al.  Travelling waves and spatial hierarchies in measles epidemics , 2001, Nature.

[84]  Maya Paczuski,et al.  Nonconservative earthquake model of self-organized criticality on a random graph. , 2002, Physical review letters.

[85]  H. Oestern,et al.  Die ICE-Katastrophe von Eschede , 1999, Notfall & Rettungsmedizin.

[86]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[87]  J. Deneubourg,et al.  From individual to collective behavior in social insects , 1987 .

[88]  Vicsek,et al.  Freezing by heating in a driven mesoscopic system , 1999, Physical review letters.

[89]  Drossel,et al.  Self-organized critical forest-fire model. , 1992, Physical review letters.

[90]  Kagan Tumer,et al.  Adaptivity in agent-based routing for data networks , 1999, AGENTS '00.

[91]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .

[92]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[93]  Paul A. Erickson Emergency Response Planning: For Corporate and Municipal Managers , 1999 .

[94]  Dirk Helbing,et al.  Crowd behaves as excitable media during Mexican wave , 2002 .

[95]  Shang‐keng Ma Modern Theory of Critical Phenomena , 1976 .

[96]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[97]  Kim Christensen,et al.  A complexity view of rainfall. , 2002, Physical review letters.

[98]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[99]  Péter Molnár,et al.  Control of distributed autonomous robotic systems using principles of pattern formation in nature and pedestrian behavior , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[100]  Gustavo Deco,et al.  Information dynamics - foundations and applications , 2000 .

[101]  T. N. Palmer,et al.  Quantifying the risk of extreme seasonal precipitation events in a changing climate , 2002, Nature.

[102]  J. Sterman Business Dynamics , 2000 .

[103]  R. May,et al.  Modelling vaccination strategies against foot-and-mouth disease , 2003, Nature.

[104]  Paul M. Maniscalco,et al.  Understanding Terrorism and Managing the Consequences , 2001 .

[105]  Eric Bonabeau,et al.  Cooperative transport by ants and robots , 2000, Robotics Auton. Syst..

[106]  E. J. Kaiser,et al.  Natural Hazard Mitigation: Recasting Disaster Policy And Planning , 1998 .

[107]  D. Helbing Modelling supply networks and business cycles as unstable transport phenomena , 2003, cond-mat/0307366.

[108]  Carlos F. Daganzo,et al.  A theory of supply chains , 2003 .

[109]  Neff Walker,et al.  The global impact of HIV/AIDS , 2001, Nature.

[110]  A. Fisher,et al.  The Theory of critical phenomena , 1992 .

[111]  Dirk Helbing,et al.  Optimal self-organization , 1999 .

[112]  Bosiljka Tadic,et al.  Temporally disordered granular flow: A model of landslides , 1998, cond-mat/9909287.

[113]  Blunt,et al.  Macroscopic parameters from simulations of pore scale flow. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[114]  I. Farkas,et al.  Social behaviour: Mexican waves in an excitable medium , 2002, Nature.

[115]  M. Newman,et al.  Epidemics and percolation in small-world networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[116]  J. Dieterich,et al.  The use of earthquake rate changes as a stress meter at Kilauea volcano , 2000, Nature.

[117]  Bernardo A. Huberman,et al.  The Dynamics of Organizational Learning , 1997, Comput. Math. Organ. Theory.