Examples, problems, and results in effect algebras

This article discusses various unsolved problems and conjectures that have arisen in the study of effect algebras (orD-posets) during the last few years. We also include some examples, counterexamples, and results that motivate or partially solve these problems. The problems mainly concern sharp and principal elements, the existence of infima in Hilbert space effect algebras, tensor products, and interval algebras.

[1]  Vector lattices of self-adjoint operators , 1965 .

[2]  G. Cattaneo,et al.  Complete effect-preparation structures: Attempt of an unification of two different approaches to axiomatic quantum mechanics , 1985 .

[3]  David J. Foulis,et al.  Phi-symmetric effect algebras , 1995 .

[4]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[5]  Michael Danos,et al.  The Mathematical Foundations of Quantum Mechanics , 1964 .

[6]  A. Dvurecenskij,et al.  Difference posets, effects, and quantum measurements , 1994 .

[7]  Sylvia Pulmannová,et al.  Orthomodular structures as quantum logics , 1991 .

[8]  A. Dvurecenskij Tensor product of difference posets , 1995 .

[9]  Pekka Lahti,et al.  Partial order of quantum effects , 1995 .

[10]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[11]  R. J. Greechie,et al.  The center of an effect algebra , 1995 .

[12]  L. Lugiato Theory of open systems I , 1975 .

[13]  E. B. Davies Quantum theory of open systems , 1976 .

[14]  Richard V. Kadison,et al.  Order properties of bounded self-adjoint operators , 1951 .

[15]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[16]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[17]  A. H. Clifford,et al.  Partially Ordered Abelian Groups , 1940 .

[18]  O. P. Zandron,et al.  Quantum methods in field theories with singular higher derivative lagrangians , 1995 .

[19]  P. Busch,et al.  The quantum theory of measurement , 1991 .

[20]  David J. Foulis,et al.  Transition to effect algebras , 1995 .

[21]  David J. Foulis,et al.  Sums and products of interval algebras , 1994 .

[22]  Chain tensor products and interval effect algebras , 1997 .

[23]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[24]  V. Varadarajan Geometry of quantum theory , 1968 .

[25]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[26]  Abner Shimony,et al.  The logic of quantum mechanics , 1981 .

[27]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[28]  K. Gravett ORDERED ABELIAN GROUPS , 1956 .

[29]  Stanley Gudder,et al.  Lattice properties of quantum effects , 1996 .

[30]  David J. Foulis,et al.  Coupled physical systems , 1989 .