Abstract Barycentric Algebras

This paper presents a new approach to the study of (real) barycentric algebras, in particular convex subsets of real affine spaces. Barycentric algebras are cast in the setting of two-sorted algebras. The real unit interval indexing the set of basic operations of a barycentric algebra is replaced by an LΠ-algebra, the algebra of Lukasiewicz Product Logic. This allows one to define barycentric algebras abstractly, independently of the choice of the unit real interval. It reveals an unexpected connection between barycentric algebras and (fuzzy) logic. The new class of abstract barycentric algebras incorporates barycentric algebras over any linearly ordered field, the B-sets of G. M. Bergman, and E. G. Manes' if-then-else algebras over Boolean algebras.

[1]  Functional representation of algebraic intervals , 1974 .

[2]  E. Manes,et al.  Adas and the equational theory of if-then-else , 1993 .

[3]  George M. Bergman,et al.  Actions of Boolean rings on sets , 1991 .

[4]  K. Iseki,et al.  AN INTRODUCTION TO THE THEORY OF THE BCK-ALGEBRAS , 1978 .

[5]  K. Kearnes Semilattice modes I: the associated semiring , 1995 .

[6]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[7]  J. Schmidt,et al.  Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie. , 1966 .

[8]  Tim E. Stokes,et al.  Sets with B-action and linear algebra , 1998 .

[9]  W. Neumann On the quasivariety of convex subsets of affine spaces , 1970 .

[10]  Franco Montagna,et al.  The $L\Pi$ and $L\Pi\frac{1}{2}$ logics: two complete fuzzy systems joining Łukasiewicz and Product Logics , 2001, Arch. Math. Log..

[11]  F. Montagna Subreducts of MV-algebras with product and product residuation , 2005 .

[12]  PROJECTION ALGEBRAS AND RECTANGULAR ALGEBRAS , 2007 .

[13]  Jonathan D. H. Smith,et al.  Duality for some free modes , 2003 .

[14]  P. J. Higgins Algebras with a Scheme of Operators , 1963 .

[15]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[16]  Franco Montagna,et al.  An Algebraic Approach to Propositional Fuzzy Logic , 2000, J. Log. Lang. Inf..

[17]  J. A. Goguen,et al.  Completeness of many-sorted equational logic , 1981, SIGP.

[18]  Stanley Gudder,et al.  Convex structures and operational quantum mechanics , 1973 .

[19]  Petr Cintula A note to the definition of the ŁΠ-algebras , 2005, Soft Comput..

[20]  W. Blok,et al.  On the structure of hoops , 2000 .

[21]  John McCarthy,et al.  A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 1) , 2018 .

[22]  Wolfgang Wechler,et al.  Universal Algebra for Computer Scientists , 1992, EATCS Monographs on Theoretical Computer Science.

[23]  T. Stokes Radical classes of algebras with B-action , 1998 .