The Three-dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation

[1]  J. Lawrence,et al.  The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules , 2011, Nature Structural &Molecular Biology.

[2]  P. Lenz,et al.  A Geometrical Model for DNA Organization in Bacteria , 2010, PloS one.

[3]  William Stafford Noble,et al.  A Three-Dimensional Model of the Yeast Genome , 2010, Nature.

[4]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[5]  J. Errington,et al.  Recruitment of Condensin to Replication Origin Regions by ParB/SpoOJ Promotes Chromosome Segregation in B. subtilis , 2009, Cell.

[6]  D. Rudner,et al.  Recruitment of SMC by ParB-parS Organizes the Origin Region and Promotes Efficient Chromosome Segregation , 2009, Cell.

[7]  Job Dekker,et al.  Yeast Silent Mating Type Loci Form Heterochromatic Clusters through Silencer Protein-Dependent Long-Range Interactions , 2009, PLoS genetics.

[8]  Stéphane Robin,et al.  The MatP/matS Site-Specific System Organizes the Terminus Region of the E. coli Chromosome into a Macrodomain , 2008, Cell.

[9]  Martin A. White,et al.  Non-random segregation of sister chromosomes in Escherichia coli , 2008, Nature.

[10]  H. McAdams,et al.  Caulobacter requires a dedicated mechanism to initiate chromosome segregation , 2008, Proceedings of the National Academy of Sciences.

[11]  G. Jensen,et al.  A Self-Associating Protein Critical for Chromosome Attachment, Division, and Polar Organization in Caulobacter , 2008, Cell.

[12]  L. Shapiro,et al.  A Polymeric Protein Anchors the Chromosomal Origin/ParB Complex at a Bacterial Cell Pole , 2008, Cell.

[13]  S. Ben-Yehuda,et al.  Spatial organization of a replicating bacterial chromosome , 2008, Proceedings of the National Academy of Sciences.

[14]  D. Sherratt,et al.  Independent Positioning and Action of Escherichia coli Replisomes in Live Cells , 2008, Cell.

[15]  Job Dekker,et al.  Gene Regulation in the Third Dimension , 2008, Science.

[16]  Elizabeth Kerr,et al.  Recruitment to the Nuclear Periphery Can Alter Expression of Genes in Human Cells , 2008, PLoS genetics.

[17]  D. Spector,et al.  A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence , 2008, The Journal of cell biology.

[18]  B. Chait,et al.  Determining the architectures of macromolecular assemblies , 2007, Nature.

[19]  J. Livny,et al.  Distribution of Centromere-Like parS Sites in Bacteria: Insights from Comparative Genomics , 2007, Journal of bacteriology.

[20]  A. Grossman,et al.  Whole‐genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin‐distal sites on the Bacillus subtilis chromosome , 2007, Molecular microbiology.

[21]  Douglas R Higgs,et al.  Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. , 2007, The EMBO journal.

[22]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[23]  K. Sandhu,et al.  Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions , 2006, Nature Genetics.

[24]  Lucy Shapiro,et al.  Chromosome organization and segregation in bacteria. , 2006, Journal of structural biology.

[25]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[26]  F. Hansen,et al.  The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves , 2006, Molecular microbiology.

[27]  R. B. Jensen Analysis of the Terminus Region of the Caulobacter crescentus Chromosome and Identification of the dif Site , 2006, Journal of bacteriology.

[28]  S. Jun,et al.  Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome , 2006, Proceedings of the National Academy of Sciences.

[29]  J. Dekker,et al.  The active FMR1 promoter is associated with a large domain of altered chromatin conformation with embedded local histone modifications , 2006, Proceedings of the National Academy of Sciences.

[30]  L. Shapiro,et al.  MipZ, a Spatial Regulator Coordinating Chromosome Segregation with Cell Division in Caulobacter , 2006, Cell.

[31]  D. Sherratt,et al.  The two Escherichia coli chromosome arms locate to separate cell halves. , 2006, Genes & development.

[32]  A. Edwards,et al.  Chromosome Condensation in the Absence of the Non-SMC Subunits of MukBEF , 2006, Journal of bacteriology.

[33]  J. Theriot,et al.  Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes , 2006, Molecular microbiology.

[34]  J. Shendure,et al.  Materials and Methods Som Text Figs. S1 and S2 Tables S1 to S4 References Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome , 2022 .

[35]  C. Woldringh,et al.  Single-particle tracking of oriC-GFP fluorescent spots during chromosome segregation in Escherichia coli. , 2005, Journal of structural biology.

[36]  Nick Gilbert,et al.  Chromatin Architecture of the Human Genome Gene-Rich Domains Are Enriched in Open Chromatin Fibers , 2004, Cell.

[37]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[38]  Patrick T. McGrath,et al.  Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  L. Shapiro,et al.  Bacterial cell division spirals into control , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[41]  C. Woldringh The role of co‐transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation , 2002, Molecular microbiology.

[42]  Roy Riblet,et al.  Subnuclear Compartmentalization of Immunoglobulin Loci During Lymphocyte Development , 2002, Science.

[43]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[44]  Antonio Trovato,et al.  Optimal shapes of compact strings , 2000, Nature.

[45]  R. B. Jensen,et al.  The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Grossman,et al.  Chromosome arrangement within a bacterium , 1998, Current Biology.

[47]  R. Sternglanz,et al.  Perinuclear localization of chromatin facilitates transcriptional silencing , 1998, Nature.

[48]  A. Grossman,et al.  Characterization of a prokaryotic SMC protein involved in chromosome partitioning. , 1998, Genes & development.

[49]  J. Gober,et al.  Cell Cycle–Dependent Polar Localization of Chromosome Partitioning Proteins in Caulobacter crescentus , 1997, Cell.

[50]  L. Shapiro,et al.  Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis. , 1993, Science.