Entropy and the Complexity of Graphs Revisited

This paper presents a taxonomy and overview of approaches to the measurement of graph and network complexity. The taxonomy distinguishes between deterministic (e.g., Kolmogorov complexity) and probabilistic approaches with a view to placing entropy-based probabilistic measurement in context. Entropy-based measurement is the main focus of the paper. Relationships between the different entropy functions used to measure complexity are examined; and intrinsic (e.g., classical measures) and extrinsic (e.g., Korner entropy) variants of entropy-based models are discussed in some detail.

[1]  R. Solé,et al.  Information Theory of Complex Networks: On Evolution and Architectural Constraints , 2004 .

[2]  Matthias Dehmer,et al.  Generalized graph entropies , 2011, Complex..

[3]  J. Hollunder,et al.  Information theoretic description of networks , 2007 .

[4]  Carter T. Butts,et al.  An axiomatic approach to network complexity , 2000 .

[5]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[6]  Danail Bonchev,et al.  The Overall Wiener Index-A New Tool for Characterization of Molecular Topology , 2001, J. Chem. Inf. Comput. Sci..

[7]  John R. Platt,et al.  Influence of Neighbor Bonds on Additive Bond Properties in Paraffins , 1947 .

[8]  Matthias Dehmer,et al.  Uniquely Discriminating Molecular Structures Using Novel Eigenvalue-Based Descriptors , 2012 .

[9]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[10]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[11]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[12]  Danail Bonchev,et al.  Complexity Analysis of Yeast Proteome Network , 2004, Chemistry & biodiversity.

[13]  Danail Bonchev,et al.  Information theoretic indices for characterization of chemical structures , 1983 .

[14]  Jean Cardinal,et al.  On minimum entropy graph colorings , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[15]  Robert E. Ulanowicz,et al.  Quantitative methods for ecological network analysi , 2004, Comput. Biol. Chem..

[16]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[17]  Matthias Dehmer,et al.  A history of graph entropy measures , 2011, Inf. Sci..

[18]  Danail G. Bonchev,et al.  Information Theoretic Complexity Measures , 2009, Encyclopedia of Complexity and Systems Science.

[19]  Marjan Vračko,et al.  Eigenvalues as Molecular Descriptors , 2001 .

[20]  Subhash C. Basak,et al.  Topological Indices: Their Nature and Mutual Relatedness , 2000, J. Chem. Inf. Comput. Sci..

[21]  Mathematical Biophysics ENTROPY AND THE COMPLEXITY OF GRAPHS: II. THE INFORMATION CONTENT OF DIGRAPHS AND INFINITE GRAPHS , 1968 .

[22]  Haruo Hosoya,et al.  On some counting polynomials in chemistry , 1988, Discret. Appl. Math..

[23]  Frank Harary,et al.  The Characteristic Polyomial Does Not Uniquely Determine the Topology of a Molecule , 1971 .

[24]  Ricard V. Solé,et al.  Complexity and fragility in ecological networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  N. Rashevsky Life, information theory, and topology , 1955 .

[26]  Steven H. Bertz,et al.  Rigorous mathematical approaches to strategic bonds and synthetic analysis based on conceptually simple new complexity indices , 1997 .

[27]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[28]  Gregory M. Constantine,et al.  Graph complexity and the laplacian matrix in blocked experiments , 1990 .

[29]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[30]  M. Dehmer,et al.  Analysis of Complex Networks: From Biology to Linguistics , 2009 .

[31]  Matthias Dehmer,et al.  Connections between Classical and Parametric Network Entropies , 2011, PloS one.

[32]  Danail Bonchev,et al.  Overall Connectivities/Topological Complexities: A New Powerful Tool for QSPR/QSAR , 2000, J. Chem. Inf. Comput. Sci..

[33]  Carter T. Butts,et al.  The complexity of social networks: theoretical and empirical findings , 2001, Soc. Networks.

[34]  D. G. Bonchev KOLMOGOROV'S INFORMATION, SHANNON'S ENTROPY, AND TOPOLOGICAL COMPLEXITY OFMOLECULES , 1995 .

[35]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[36]  Matthias Dehmer,et al.  Information processing in complex networks: Graph entropy and information functionals , 2008, Appl. Math. Comput..

[37]  D. Bonchev,et al.  Complexity in chemistry, biology, and ecology , 2005 .

[38]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[39]  Stasys Jukna,et al.  On Graph Complexity , 2006, Combinatorics, Probability and Computing.

[40]  Matthias Dehmer,et al.  Information theoretic measures of UHG graphs with low computational complexity , 2007, Appl. Math. Comput..

[41]  Petra Weiß,et al.  A Network Model of Interpersonal Alignment in Dialog , 2010, Entropy.

[42]  Gábor Simonyi,et al.  Graph entropy: A survey , 1993, Combinatorial Optimization.

[43]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[44]  Ginestra Bianconi,et al.  Entropy measures for networks: toward an information theory of complex topologies. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Matthias M Dehmer,et al.  Novel topological descriptors for analyzing biological networks , 2010, BMC Structural Biology.

[46]  A. Mowshowitz,et al.  Entropy and the complexity of graphs. I. An index of the relative complexity of a graph. , 1968, The Bulletin of mathematical biophysics.

[47]  Stephan Borgert,et al.  On Entropy-Based Molecular Descriptors: Statistical Analysis of Real and Synthetic Chemical Structures , 2009, J. Chem. Inf. Model..