Dynamic Diffusion Estimation in Exponential Family Models

This letter proposes a new dynamic diffusion estimation method for a collaborative inference of a common model parameter using a distributed network of cooperating nodes. Unlike the existing single problem-oriented diffusion methods, it is formulated abstractly for the exponential family of models. The resulting advantage-its easy and straightforward application to the family members-is demonstrated on three selected cases: the diffusion autoregression, the diffusion Poisson modelling and the diffusion estimation of a Bernoulli process with unknown proportions. The first case is shown to coincide with the diffusion recursive least squares.

[1]  Ali H. Sayed,et al.  Diffusion Strategies for Distributed Kalman Filtering and Smoothing , 2010, IEEE Transactions on Automatic Control.

[2]  M. Kárný,et al.  Parameter tracking with partial forgetting method , 2012 .

[3]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[4]  Ali H. Sayed,et al.  Diffusion LMS Strategies for Distributed Estimation , 2010, IEEE Transactions on Signal Processing.

[5]  Roberto López-Valcarce,et al.  Stepsize Sequence Design for Distributed Average Consensus , 2010, IEEE Signal Processing Letters.

[6]  Ali H. Sayed,et al.  Diffusion Least-Mean Squares Over Adaptive Networks: Formulation and Performance Analysis , 2008, IEEE Transactions on Signal Processing.

[7]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[8]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[9]  Ali H. Sayed,et al.  Diffusion recursive least-squares for distributed estimation over adaptive networks , 2008, IEEE Transactions on Signal Processing.

[10]  Ali H. Sayed,et al.  Diffusion Strategies Outperform Consensus Strategies for Distributed Estimation Over Adaptive Networks , 2012, IEEE Transactions on Signal Processing.

[11]  V. Peterka BAYESIAN APPROACH TO SYSTEM IDENTIFICATION , 1981 .

[12]  Ali Jadbabaie,et al.  Non-Bayesian Social Learning , 2011, Games Econ. Behav..

[13]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[14]  Alejandro Ribeiro,et al.  Consensus in Ad Hoc WSNs With Noisy Links—Part I: Distributed Estimation of Deterministic Signals , 2008, IEEE Transactions on Signal Processing.

[15]  Zhaoyang Zhang,et al.  Distributed estimation over complex networks , 2012, Inf. Sci..