Some algorithmic results for [2]-sumset covers

Let X={xi:1≤i≤n}⊂N+X={xi:1≤i≤n}⊂N+, and h∈N+h∈N+. The h-iterated sumset of X , denoted hX , is the set {x1+x2+...+xh:x1,x2,...,xh∈X}{x1+x2+...+xh:x1,x2,...,xh∈X}, and the [h][h]-sumset of X , denoted [h]X[h]X, is the set View the MathML source⋃i=1hiX. A [h][h]-sumset cover of S⊂N+S⊂N+ is a set X⊂N+X⊂N+ such that S⊆[h]XS⊆[h]X. In this paper, we focus on the case h=2h=2, and study the APX-hardproblem of computing a minimum cardinality [2]-sumset cover X of S (i.e. computing a minimum cardinality set X⊂N+X⊂N+ such that every element of S is either an element of X , or the sum of two - non-necessarily distinct - elements of X ). We propose two new algorithmic results. First, we give a fixed-parameter tractable (FPT) algorithm that decides the existence of a [2]-sumset cover of size at most k of a given set S . Our algorithm runs in View the MathML sourceO(2(3logk−1.4)kpoly(k)) time, and thus outperforms the O(5k2(k+3)2k2log(k)) time FPT result presented in Fagnot et al. (2009) [6]. Second, we show that deciding whether a set S has a smaller [2]-sumset cover than itself is NP-hard.

[1]  Harri. Haanpaa,et al.  Minimum Sum and Difierence Covers of Abelian Groups , 2004 .

[2]  Mike Develin On Optimal Subset Representations of Integer Sets , 2001 .

[3]  Melvyn B. Nathanson,et al.  Additive Number Theory The Classical Bases , 1996 .

[4]  Patric R. J. Östergård,et al.  Sets in Z nwith distinct sums of pairs , 2004, Discret. Appl. Math..

[5]  Stephan Eidenbenz,et al.  On the Complexity of Variations of Equal Sum Subsets , 2008, Nord. J. Comput..

[6]  Harri Haanp Sets in Zn with distinct sums of pairs , 2003 .

[7]  David Petrie Moulton Representing Powers of Numbers as Subset Sums of Small Sets , 2001 .

[8]  L. Moser On the representation of 1,2,..., n by sums , 1960 .

[9]  Maxwell Young,et al.  Nonnegative integral subset representations of integer sets , 2007, Inf. Process. Lett..

[10]  Dror Rawitz,et al.  The Minimum Substring Cover problem , 2008, Inf. Comput..

[11]  A. Stöhr,et al.  Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. II. , 1955 .

[12]  Christopher N. Swanson Planar cyclic difference packings. , 2000 .

[13]  Dror Rawitz,et al.  The Minimum Substring Cover problem , 2007, Inf. Comput..

[14]  A. Stöhr,et al.  Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. I. , 1955 .

[15]  Guillaume Fertin,et al.  On Finding Small 2-Generating Sets , 2009, COCOON.

[16]  Robert E. Jamison,et al.  Minimum Sum Covers of Small Cyclic Groups , 2000 .

[17]  W. F. Lunnon A postage stamp problem , 1969, Comput. J..

[18]  Hauz Khas,et al.  A Note on the Postage Stamp Problem , 2006 .

[19]  Wolfgang Spohn,et al.  The Representation of , 1986 .