Some algorithmic results for [2]-sumset covers
暂无分享,去创建一个
[1] Harri. Haanpaa,et al. Minimum Sum and Difierence Covers of Abelian Groups , 2004 .
[2] Mike Develin. On Optimal Subset Representations of Integer Sets , 2001 .
[3] Melvyn B. Nathanson,et al. Additive Number Theory The Classical Bases , 1996 .
[4] Patric R. J. Östergård,et al. Sets in Z nwith distinct sums of pairs , 2004, Discret. Appl. Math..
[5] Stephan Eidenbenz,et al. On the Complexity of Variations of Equal Sum Subsets , 2008, Nord. J. Comput..
[6] Harri Haanp. Sets in Zn with distinct sums of pairs , 2003 .
[7] David Petrie Moulton. Representing Powers of Numbers as Subset Sums of Small Sets , 2001 .
[8] L. Moser. On the representation of 1,2,..., n by sums , 1960 .
[9] Maxwell Young,et al. Nonnegative integral subset representations of integer sets , 2007, Inf. Process. Lett..
[10] Dror Rawitz,et al. The Minimum Substring Cover problem , 2008, Inf. Comput..
[11] A. Stöhr,et al. Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. II. , 1955 .
[12] Christopher N. Swanson. Planar cyclic difference packings. , 2000 .
[13] Dror Rawitz,et al. The Minimum Substring Cover problem , 2007, Inf. Comput..
[14] A. Stöhr,et al. Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. I. , 1955 .
[15] Guillaume Fertin,et al. On Finding Small 2-Generating Sets , 2009, COCOON.
[16] Robert E. Jamison,et al. Minimum Sum Covers of Small Cyclic Groups , 2000 .
[17] W. F. Lunnon. A postage stamp problem , 1969, Comput. J..
[18] Hauz Khas,et al. A Note on the Postage Stamp Problem , 2006 .
[19] Wolfgang Spohn,et al. The Representation of , 1986 .