Les ressources explicites vues par la théorie de la réécriture. (Explicit resources from the rewriting point of view)

Cette these s'articule autour de la gestion de ressources explicites dans les langages fonctionnels, en mettant l'accent sur des proprietes de calculs avec substitutions explicites raffinant le lambda-calcul. Dans une premiere partie, on s'interesse a la propriete de preservation de la beta-normalisation forte (PSN) pour le calcul lambda s. Dans une seconde partie, on etudie la propriete de confluence pour un large ensemble de calculs avec substitutions explicites. Apres avoir donne une preuve generique de confluence basee sur une serie d'axiomes qu'un calcul doit satisfaire, on se focalise sur la metaconfluence de lambda j, un calcul ou le mecanisme de propagation des substitutions utilise la notion de multiplicite, au lieu de celle de structure. Dans la troisieme partie de la these on definit un prisme des ressources qui generalise de maniere parametrique le lambda-calcul dans le sens ou non seulement la substitution peut etre explicite, mais egalement la contraction et l'affaiblissement. Cela donne un ensemble de huit calculs repartis sur les sommets du prisme pour lesquels on prouve de maniere uniforme plusieurs proprietes de bon comportement comme par exemple la simulation de la beta-reduction, la PSN, la confluence, et la normalisation forte pour les termes types. Dans la derniere partie de la these on montre differentes ouvertures vers des domaines plus pratiques. On s'interesse a la complexite d'un calcul avec substitutions en premier lieu. On presente des outils de recherche et on conjecture des bornes maximales. Enfin, on finit en donnant une specification formelle du calcul lambda j dans l'assistant a la preuve Coq.

[1]  Delia Kesner,et al.  Expression Reduction Systems and Extensions: An Overview , 2005, Processes, Terms and Cycles.

[2]  Delia Kesner,et al.  The Prismoid of Resources , 2009, MFCS.

[3]  Tom Ridge,et al.  Ott: effective tool support for the working semanticist , 2007, ICFP '07.

[4]  Vincent van Oostrom,et al.  Confluence by Decreasing Diagrams , 1994, Theor. Comput. Sci..

[5]  Kristoffer Hogsbro Rose,et al.  Operational reduction models for functional programming languages , 1996, Technical report / University of Copenhagen / Datalogisk institut.

[6]  Helmut Schwichtenberg,et al.  An upper bound for reduction sequences in the typed λ-calculus , 1991, Arch. Math. Log..

[7]  Femke van Raamsdonk Confluence and Superdevelopments , 1993, RTA.

[8]  Silvia Likavec,et al.  Intersection Types for the Resource Control Lambda Calculi , 2011, ICTAC.

[9]  Silvia Ghilezan,et al.  Intuitionistic Sequent-Style Calculus with Explicit Structural Rules , 2009, TbiLLC.

[10]  Alejandro Ríos,et al.  Swapping: a natural bridge between named and indexed explicit substitution calculi , 2011, HOR.

[11]  Pierre Lescanne,et al.  From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.

[12]  Frédéric Lang,et al.  On Explicit Substitution with Names , 2011, Journal of Automated Reasoning.

[13]  Paul-André Melliès Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.

[14]  William A. Howard,et al.  Ordinal analysis of terms of finite type , 1980, Journal of Symbolic Logic.

[15]  Gopalan Nadathur,et al.  The Suspension Notation for Lambda Terms and its Use in Metalanguage Implementations , 2002, WoLLIC.

[16]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[17]  Aleksy Schubert The Complexity of beta-Reduction in Low Orders , 2001, TLCA.

[18]  Delia Kesner,et al.  A Theory of Explicit Substitutions with Safe and Full Composition , 2009, Log. Methods Comput. Sci..

[19]  Robin Milner,et al.  Local Bigraphs and Confluence: Two Conjectures: (Extended Abstract) , 2007, EXPRESS.

[20]  Delia Kesner,et al.  A prismoid framework for languages with resources , 2011, Theor. Comput. Sci..

[21]  Delia Kesner,et al.  The Theory of Calculi with Explicit Substitutions Revisited , 2007, CSL.

[22]  Paul-Andr Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .

[23]  F. Raamsdonk Confluence and Normalisation of Higher-Order Rewriting , 1996 .

[24]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[25]  Alan M. Turing,et al.  Computability and λ-definability , 1937, Journal of Symbolic Logic.

[26]  Pierre Lescanne,et al.  Explicit Substitutions with de Bruijn's Levels , 1995, RTA.

[27]  Vincent van Oostrom,et al.  Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday , 2005, Processes, Terms and Cycles.

[28]  Delia Kesner,et al.  Resource operators for lambda-calculus , 2007, Inf. Comput..

[29]  Thérèse Hardin,et al.  Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..

[30]  Helmat Schwichtenberg,et al.  Complexity of Normalization in the Pure Typed Lambda – Calculus , 1982 .

[31]  Andrew Gacek The Abella Interactive Theorem Prover (System Description) , 2008, IJCAR.

[32]  Hongwei Xi Upper bounds for standardizations and an application , 1999 .

[33]  Jean-Jacques Lévy,et al.  Explicit Substitutions and Programming Languages , 1999, FSTTCS.

[34]  Erik Poll,et al.  Pure Type Systems with Definitions , 1994, LFCS.

[35]  Kristoffer Høgsbro Rose,et al.  Explicit Cyclic Substitutions , 1992, CTRS.

[36]  S. Kleene,et al.  λ-Definability and Recursiveness. , 1937 .

[37]  James McKinna,et al.  Pure Type Systems Formalized , 1993, TLCA.

[38]  Paula Severi,et al.  Perpetual Reductions in *-Calculus , 1999 .

[39]  Tom Ridge,et al.  Ott: Effective tool support for the working semanticist , 2010, J. Funct. Program..

[40]  Delia Kesner,et al.  Extending the Explicit Substitution Paradigm , 2005, RTA.

[41]  Vincent van Oostrom Random Descent , 2007, RTA.

[42]  Andrew D. Gordon,et al.  A Mechanisation of Name-Carrying Syntax up to Alpha-Conversion , 1993, HUG.

[43]  Rp Rob Nederpelt The fine-structure of lambda calculus , 1992 .

[44]  Delia Kesner,et al.  Confluence Properties of Extensional and Non-Extensional lambda-Calculi with Explicit Substitutions (Extended Abstract) , 1996, RTA.

[45]  Fairouz Kamareddine,et al.  Extending a lambda-Calculus with Explicit Substitution which Preserves Strong Normalisation Into a Confluent Calculus on Open Terms , 1997, J. Funct. Program..

[46]  Teruo Hikita,et al.  A Rewriting System for Categorical Combinators with Multiple Arguments , 1990, SIAM J. Comput..

[47]  Nicolas Guenot Nested Proof Search as Reduction in the λ-calculus , 2011 .