Les ressources explicites vues par la théorie de la réécriture. (Explicit resources from the rewriting point of view)
暂无分享,去创建一个
[1] Delia Kesner,et al. Expression Reduction Systems and Extensions: An Overview , 2005, Processes, Terms and Cycles.
[2] Delia Kesner,et al. The Prismoid of Resources , 2009, MFCS.
[3] Tom Ridge,et al. Ott: effective tool support for the working semanticist , 2007, ICFP '07.
[4] Vincent van Oostrom,et al. Confluence by Decreasing Diagrams , 1994, Theor. Comput. Sci..
[5] Kristoffer Hogsbro Rose,et al. Operational reduction models for functional programming languages , 1996, Technical report / University of Copenhagen / Datalogisk institut.
[6] Helmut Schwichtenberg,et al. An upper bound for reduction sequences in the typed λ-calculus , 1991, Arch. Math. Log..
[7] Femke van Raamsdonk. Confluence and Superdevelopments , 1993, RTA.
[8] Silvia Likavec,et al. Intersection Types for the Resource Control Lambda Calculi , 2011, ICTAC.
[9] Silvia Ghilezan,et al. Intuitionistic Sequent-Style Calculus with Explicit Structural Rules , 2009, TbiLLC.
[10] Alejandro Ríos,et al. Swapping: a natural bridge between named and indexed explicit substitution calculi , 2011, HOR.
[11] Pierre Lescanne,et al. From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.
[12] Frédéric Lang,et al. On Explicit Substitution with Names , 2011, Journal of Automated Reasoning.
[13] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.
[14] William A. Howard,et al. Ordinal analysis of terms of finite type , 1980, Journal of Symbolic Logic.
[15] Gopalan Nadathur,et al. The Suspension Notation for Lambda Terms and its Use in Metalanguage Implementations , 2002, WoLLIC.
[16] Andrew M. Pitts,et al. A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.
[17] Aleksy Schubert. The Complexity of beta-Reduction in Low Orders , 2001, TLCA.
[18] Delia Kesner,et al. A Theory of Explicit Substitutions with Safe and Full Composition , 2009, Log. Methods Comput. Sci..
[19] Robin Milner,et al. Local Bigraphs and Confluence: Two Conjectures: (Extended Abstract) , 2007, EXPRESS.
[20] Delia Kesner,et al. A prismoid framework for languages with resources , 2011, Theor. Comput. Sci..
[21] Delia Kesner,et al. The Theory of Calculi with Explicit Substitutions Revisited , 2007, CSL.
[22] Paul-Andr. Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .
[23] F. Raamsdonk. Confluence and Normalisation of Higher-Order Rewriting , 1996 .
[24] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[25] Alan M. Turing,et al. Computability and λ-definability , 1937, Journal of Symbolic Logic.
[26] Pierre Lescanne,et al. Explicit Substitutions with de Bruijn's Levels , 1995, RTA.
[27] Vincent van Oostrom,et al. Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday , 2005, Processes, Terms and Cycles.
[28] Delia Kesner,et al. Resource operators for lambda-calculus , 2007, Inf. Comput..
[29] Thérèse Hardin,et al. Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..
[30] Helmat Schwichtenberg,et al. Complexity of Normalization in the Pure Typed Lambda – Calculus , 1982 .
[31] Andrew Gacek. The Abella Interactive Theorem Prover (System Description) , 2008, IJCAR.
[32] Hongwei Xi. Upper bounds for standardizations and an application , 1999 .
[33] Jean-Jacques Lévy,et al. Explicit Substitutions and Programming Languages , 1999, FSTTCS.
[34] Erik Poll,et al. Pure Type Systems with Definitions , 1994, LFCS.
[35] Kristoffer Høgsbro Rose,et al. Explicit Cyclic Substitutions , 1992, CTRS.
[36] S. Kleene,et al. λ-Definability and Recursiveness. , 1937 .
[37] James McKinna,et al. Pure Type Systems Formalized , 1993, TLCA.
[38] Paula Severi,et al. Perpetual Reductions in *-Calculus , 1999 .
[39] Tom Ridge,et al. Ott: Effective tool support for the working semanticist , 2010, J. Funct. Program..
[40] Delia Kesner,et al. Extending the Explicit Substitution Paradigm , 2005, RTA.
[41] Vincent van Oostrom. Random Descent , 2007, RTA.
[42] Andrew D. Gordon,et al. A Mechanisation of Name-Carrying Syntax up to Alpha-Conversion , 1993, HUG.
[43] Rp Rob Nederpelt. The fine-structure of lambda calculus , 1992 .
[44] Delia Kesner,et al. Confluence Properties of Extensional and Non-Extensional lambda-Calculi with Explicit Substitutions (Extended Abstract) , 1996, RTA.
[45] Fairouz Kamareddine,et al. Extending a lambda-Calculus with Explicit Substitution which Preserves Strong Normalisation Into a Confluent Calculus on Open Terms , 1997, J. Funct. Program..
[46] Teruo Hikita,et al. A Rewriting System for Categorical Combinators with Multiple Arguments , 1990, SIAM J. Comput..
[47] Nicolas Guenot. Nested Proof Search as Reduction in the λ-calculus , 2011 .