A Sobolev Space Analysis of Picture Reconstruction

The problem of recovering the density function of a plane picture from its line integrals is considered. If a picture of finite extent whose density function belongs to the Sobolev space$H^\alpha $ of order $\alpha > \frac{1} {2}$ is to be reconstructed from n line integrals with a root mean square error $\varepsilon $, then the root mean square error of the reconstruction is of the order $(\varepsilon ^{\alpha /(\alpha + 1/2)} + n^{ - \alpha / 2} )\| y \|_{H^\alpha }$ at least. We give a reconstruction method which achieves this optimal error bound.

[1]  Kennan T. Smith,et al.  Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .

[2]  G. Kowalski,et al.  Generation of Pictures by X-ray Scanners , 1977 .

[3]  T. Budinger,et al.  Three-dimensional reconstruction in nuclear medicine emission imaging , 1974 .

[4]  L. Franks A model for the random video process , 1966 .

[5]  G. Hounsfield Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.

[6]  G T Herman,et al.  Resolution in reconstructing objects from electron micrographs. , 1971, Journal of theoretical biology.

[7]  A. Louis,et al.  Picture reconstruction from projections in restricted range , 1980 .

[8]  T. J. Rivlin,et al.  Optimal Estimation in Approximation Theory , 1977 .

[9]  H. Helfrich Optimale lineare approximation beschr?nkter Mengen in normierten R?umen , 1971 .

[10]  L. Karlovitz,et al.  Remarks on variational characterizations of eigenvalues and n-width problems☆ , 1976 .

[11]  G T Herman,et al.  ART: mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. , 1973, Journal of theoretical biology.

[12]  Gabor T. Herman,et al.  A Computer Implementation of a Bayesian Analysis of Image Reconstruction , 1976, Inf. Control..

[13]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[14]  M. Tasto,et al.  Reconstruction of random objects from noisy projections , 1977 .

[15]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[16]  A. Lent,et al.  Iterative reconstruction algorithms. , 1976, Computers in biology and medicine.

[17]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[18]  Reconstruction from X-Rays , 1977 .

[19]  Gabor T. Herman,et al.  The reconstruction of objects from shadowgraphs with high contrasts , 1975, Pattern Recognit..

[20]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .