Quantum circuit oracles for Abstract Machine computations

This paper considers a very general model of computation via conditional iteration, the abstract machines of Hines (2008) [23], and studies the conditions under which these describe reversible computations. Using this, we demonstrate how to construct quantum circuits that act as oracles for these Abstract Machines. For a classical computation with worst-case performance T, the resulting quantum circuit requires an ancilla of 1+log(T) qubits, and takes O(T) steps. The ancilla starts and finishes in the constant state |0>, so garbage collection is performed automatically.

[1]  Esfandiar Haghverdi,et al.  A categorical approach to linear logic, geometry of proofs and full completeness. , 2000 .

[2]  J. Myers CAN A UNIVERSAL QUANTUM COMPUTER BE FULLY QUANTUM , 1997 .

[3]  P. Hines,et al.  Semantic Techniques in Quantum Computation: The Structure of Partial Isometries , 2009 .

[4]  Peter Hines Machine Semantics - From Causality to Computational Models , 2008, Int. J. Unconv. Comput..

[5]  Samson Abramsky,et al.  Geometry of Interaction and linear combinatory algebras , 2002, Mathematical Structures in Computer Science.

[6]  Peter Hines,et al.  Machine semantics , 2008, Theor. Comput. Sci..

[7]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[8]  R. Van Meter Fast quantum modular exponentiation (12 pages) , 2005 .

[9]  S. Popescu,et al.  The Halting Problem for Quantum Computers , 1998, quant-ph/9806054.

[10]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[11]  Masahito Hasegawa,et al.  On traced monoidal closed categories , 2009, Mathematical Structures in Computer Science.

[12]  H. S. Allen The Quantum Theory , 1928, Nature.

[13]  Jean-Yves Girard,et al.  Geometry of interaction 2: deadlock-free algorithms , 1990, Conference on Computer Logic.

[14]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[15]  Vincent Danos,et al.  Local and asynchronous beta-reduction (an analysis of Girard's execution formula) , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[16]  Jean-Yves Girard,et al.  Geometry of Interaction V: Logic in the hyperfinite factor , 2011, Theor. Comput. Sci..

[17]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  Ross Street,et al.  Traced monoidal categories , 1996 .

[19]  Tien D. Kieu,et al.  A no-go theorem for halting a universal quantum computer , 2001 .

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  Mario Petrich,et al.  Inverse semigroups , 1985 .

[22]  Ming Li,et al.  Reversible simulation of irreversible computation , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[23]  Michael Barr,et al.  Algebraically compact functors , 1992 .

[24]  Ian Mackie,et al.  Semantic Techniques in Quantum Computation , 2009 .

[25]  Peter Hines Physical Systems as Constructive Logics , 2006, UC.

[26]  Philip J. Scott,et al.  A categorical model for the geometry of interaction , 2006, Theor. Comput. Sci..

[27]  Masanori Ohya,et al.  On Halting Process of Quantum Turing Machine , 2005, Open Syst. Inf. Dyn..

[28]  Vlatko Vedral,et al.  Basics of quantum computation , 1998, quant-ph/9802065.

[29]  Samson Abramsky,et al.  Retracing some paths in Process Algebra , 1996, CONCUR.

[30]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[31]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[32]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[33]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[34]  Alan T. Sherman,et al.  A Note on Bennett's Time-Space Tradeoff for Reversible Computation , 1990, SIAM J. Comput..

[35]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[36]  Thomas G. Draper Addition on a Quantum Computer , 2000, quant-ph/0008033.

[37]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[38]  Andreas Blass,et al.  A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..

[39]  Samson Abramsky,et al.  Abstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories , 2005, CALCO.

[40]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.