Nonlinear FP etalons and microlaser devices

Vertical-cavity surface-emitting lasers'-4 show promise for a variety of applications. High power, low-cost laser sources might result from large coherently-coupled arrays. Small arrays could accomplish high-speed communication between electronic chips, overcoming a bottleneck which presently limits the speed of computers. In the longer term, arrays of laser- based logic gates may be used for photonic switching in communication networks, or for digital or neural computing. In these information processing applications, minimizing the threshold is essential. The lowest threshold edge-emitting lasers5-7 contain a single quantum well and require approximately 0.55 mA. Minimum thresholds will be attained by minimizing the volume of active material in the laser, which in turn requires high- reflectivity mirrors. GaAs-AlAs mirrors grown by molecular beam epitaxy (MBE) have achieved extremely high reflectivity (<99%), high enough to achieve optically-pumped lasing in a vertical cavity with a 80-A-thick single quantum well (SQW) active layer8. Chemically-assisted ion beam etching (CAIE3E) can form waveguiding pillars in such heterostructures with micron dimensions, and optically-pumped lasers with 1.5 pm diameters were demonstrated'. Use of these technologies is effective in fabricating' ultra- small micro-lasers (plasers). In this paper we discuss our initial experiments with plasers, which achieved 1.5 mA room-temperature CW thresholds and up to 8 GHz modulation speeds. We then present all-optical studies (performed earlier) of the characteristics of ultra-small microresonator structures.

[1]  Y. H. Lee,et al.  3‐pJ, 82‐MHz optical logic gates in a room‐temperature GaAs‐AlGaAs multiple‐quantum‐well étalon , 1985 .

[2]  A. L. Lentine,et al.  Symmetric self-electrooptic effect device : optical set-reset latch, defferential logic gate and differential modulator/detector , 1989 .

[3]  Larry A. Coldren,et al.  High‐efficiency TEM00 continuous‐wave (Al,Ga)As epitaxial surface‐emitting lasers and effect of half‐wave periodic gain , 1989 .

[4]  B. E. Hammons,et al.  Surface-emitting, multiple quantum well GaAs/AlGaAs laser with wavelength-resonant periodic gain medium , 1988 .

[5]  N. A. Olsson,et al.  Room‐temperature continuous‐wave vertical‐cavity surface‐emitting GaAs injection lasers , 1989 .

[6]  Piet Demeester,et al.  High‐reflectivity GaAs‐AlGaAs mirrors: Sensitivity analysis with respect to epitaxial growth parameters , 1987 .

[7]  Amnon Yariv,et al.  Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers , 1988 .

[8]  Won-Tien Tsang,et al.  Extremely low threshold (AlGa)As graded‐index waveguide separate‐confinement heterostructure lasers grown by molecular beam epitaxy , 1982 .

[9]  Jack L. Jewell,et al.  Low threshold electrically-pumped vertical-cavity surface-emitting micro-lasers , 1989 .

[10]  Axel Scherer,et al.  Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators , 1989 .

[11]  Tatsuhiko Niina,et al.  Buried Heterostructure GaAs/GaAlAs Distributed Bragg Reflector Surface Emitting Laser with Very Low Threshold (5.2 mA) under Room Temperature CW Conditions , 1989 .

[12]  H. Morkoç,et al.  Extremely low resistance nonalloyed ohmic contacts on GaAs using InAs/InGaAs and InAs/GaAs strained-layer superlattices , 1988 .

[13]  H. Casey,et al.  Refractive index of AlxGa1−xAs between 1.2 and 1.8 eV , 1974 .

[14]  James R. Leger,et al.  Coherent addition of AlGaAs lasers using microlenses and diffractive coupling , 1988 .

[15]  Kam Y. Lau,et al.  Ultralow‐threshold graded‐index separate‐confinement single quantum well buried heterostructure (Al,Ga)As lasers with high reflectivity coatings , 1987 .

[16]  J. L. Jewell,et al.  GaAs-AlAs Monolithic Microresonator Arrays , 1987, Other Conferences.

[17]  A. Yariv,et al.  Ultimate limit in low threshold quantum well GaAlAs semiconductor lasers , 1988, 1987 International Electron Devices Meeting.

[18]  L. M. Zinkiewicz,et al.  High‐power vertical‐cavity surface‐emitting AlGaAs/GaAs diode lasers , 1989 .

[19]  Paul A. Kohl,et al.  Photoelectrochemical etching of integral lenses on InGaAsP/InP light‐emitting diodes , 1983 .

[20]  James N. Walpole,et al.  Gallium phosphide microlenses by mass transport , 1989 .

[21]  Axel Scherer,et al.  Lasing characteristics of GaAs microresonators , 1989 .

[22]  J. Winthrop,et al.  Theory of Fresnel Images. I. Plane Periodic Objects in Monochromatic Light , 1965 .

[23]  Y. H. Lee,et al.  Optical computing and related microoptic devices. , 1990, Applied optics.

[24]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[25]  Yong-Hee Lee,et al.  Vertical Cavity Single-Quantum-Well Laser , 1989, Photonic Switching.

[26]  M. E. Prise,et al.  Free-space optical interconnection scheme. , 1990, Applied optics.

[27]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[28]  Larry A. Coldren,et al.  Analysis and design of a novel parallel-driven MQW-DBR surface-emitting diode laser , 1988 .

[29]  Jack L. Jewell,et al.  Room-Temperature Continuous-Wave Vertical-Cavity Single-Quantum-Well Microlaser Diodes , 1989 .

[30]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[31]  Kenichi Iga,et al.  Room temperature cw vertical cavity surface emitting laser and high power 2-D laser array , 1989 .

[32]  J. P. Harbison,et al.  Electronic passivation of GaAs surfaces through the formation of arsenic—sulfur bonds , 1989 .