Attractiveness of Brownian queues in tandem

Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one-sided reflection.

[1]  B. Prabhakar The attractiveness of the fixed points of a $\cdot/GI/1$ queue , 2003 .

[2]  J. Pitman,et al.  ONE-DIMENSIONAL BROWNIAN PARTICLE SYSTEMS WITH RANK DEPENDENT DRIFTS , 2007, 0704.0957.

[3]  H. Spohn,et al.  Scaling Limit for Brownian Motions with One-sided Collisions , 2013, 1306.5095.

[4]  B. Prabhakar,et al.  On the Weak Convergence of Departures from an Infinite Series of $\cdot /M/ 1$ Queues , 1995 .

[5]  T. Seppäläinen,et al.  Geodesics and the competition interface for the corner growth model , 2016, Probability Theory and Related Fields.

[6]  Janko Gravner,et al.  Limit Theorems for Height Fluctuations in a Class of Discrete Space and Time Growth Models , 2000 .

[7]  Marc Yor,et al.  Brownian analogues of Burke's theorem , 2001 .

[8]  James B. Martin,et al.  Concentration results for a Brownian directed percolation problem , 2002 .

[9]  R. M. Loynes,et al.  The stability of a queue with non-independent inter-arrival and service times , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  P. Lieshout,et al.  Tandem Brownian queues , 2007, Math. Methods Oper. Res..

[11]  Second class particles and cube root asymptotics for Hammersley's process , 2006, math/0603345.

[12]  Leandro P. R. Pimentel,et al.  On the location of the maximum of a process: Lévy, Gaussian and Random field cases , 2018, Stochastics.

[13]  Leandro P. R. Pimentel,et al.  On the location of the maximum of a process: Lévy, Gaussian and multidimensional cases , 2016, 1611.02334.

[14]  Shocks in the Burgers Equation and the Asymmetric Simple Exclusion Process , 1992 .

[15]  J. M. Harrison,et al.  On the Quasireversibility of a Multiclass Brownian Service Station , 1990 .

[16]  T. Seppäläinen,et al.  Stationary cocycles and Busemann functions for the corner growth model , 2015, 1510.00859.

[17]  yuliy baryshnikov GUEs and queues , 1999 .

[18]  I. Karatzas,et al.  Systems of Brownian particles with asymmetric collisions , 2012, 1210.0259.

[19]  P. Glynn,et al.  Departures from Many Queues in Series , 1991 .

[20]  I. Karatzas,et al.  On collisions of Brownian particles , 2008, 0810.2149.

[21]  Jean Mairesse,et al.  THE EXISTENCE OF FIXED POINTS FOR THE./ GI / 1 QUEUE , 2003 .

[22]  Sergio I. López Convergence of tandem Brownian queues , 2016, J. Appl. Probab..

[23]  Leandro P. R. Pimentel,et al.  Busemann functions and equilibrium measures in last passage percolation models , 2009, 0901.2450.

[24]  H. Spohn,et al.  Brownian motions with one-sided collisions: the stationary case , 2015, 1502.01468.

[25]  Timo Seppäläinen,et al.  A scaling limit for queues in series , 1997 .