Does a Bayesian model of V1 contrast coding offer a neurophysiological account of human contrast discrimination?

[1]  Vision Research , 1961, Nature.

[2]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[3]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[4]  J. Nachmias,et al.  Visual detection and discrimination of luminance increments. , 1970, Journal of the Optical Society of America.

[5]  D. J. WILLSHAW,et al.  Models for the Brain , 1970, Nature.

[6]  D. Tolhurst Separate channels for the analysis of the shape and the movement of a moving visual stimulus , 1973, The Journal of physiology.

[7]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[8]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[9]  J Nachmias,et al.  Letter: Grating contrast: discrimination may be better than detection. , 1974, Vision research.

[10]  D. Tolhurst,et al.  Interactions between spatial frequency channels , 1978, Vision Research.

[11]  P. O. Bishop,et al.  Dimensions and properties of end-zone inhibitory areas in receptive fields of hypercomplex cells in cat striate cortex. , 1979, Journal of neurophysiology.

[12]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[13]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[14]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[15]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[16]  S. R. Lehky,et al.  Temporal properties of visual channels measured by masking. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[17]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[18]  I. Ohzawa,et al.  A comparison of contrast detection and discrimination , 1986, Vision Research.

[19]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Barlow,et al.  Human contrast discrimination and the threshold of cortical neurons. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[21]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[22]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[24]  Denis G. Pelli,et al.  Accurate control of contrast on microcomputer displays , 1991, Vision Research.

[25]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[26]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[27]  R. F. Hess,et al.  Temporal properties of human visual filters: number, shapes and spatial covariation , 1992, Vision Research.

[28]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[29]  D. Kiper,et al.  Suprathreshold contrast sensitivity in experimentally strabismic monkeys , 1994, Vision Research.

[30]  J. M. Foley,et al.  Human luminance pattern-vision mechanisms: masking experiments require a new model. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Y Y Zeevi,et al.  Visual assessment of variable-resolution imagery. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  D. G. Albrecht,et al.  Bayesian analysis of identification performance in monkey visual cortex: Nonlinear mechanisms and stimulus certainty , 1995, Vision Research.

[33]  J. Movshon,et al.  A computational analysis of the relationship between neuronal and behavioral responses to visual motion , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[35]  D. Heeger,et al.  Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[36]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[37]  D. G. Albrecht,et al.  Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification , 1997, Visual Neuroscience.

[38]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[39]  I. Ohzawa,et al.  Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex , 1999, Visual Neuroscience.

[40]  J. M. Foley,et al.  Temporal sensitivity of human luminance pattern mechanisms determined by masking with temporally modulated stimuli , 1999, Vision Research.

[41]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[42]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[43]  C Koch,et al.  Revisiting spatial vision: toward a unifying model. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  F. Mechler,et al.  Temporal coding of contrast in primary visual cortex: when, what, and why. , 2001, Journal of neurophysiology.

[45]  Dov Sagi,et al.  Disentangling signal from noise in visual contrast discrimination , 2001, Nature Neuroscience.

[46]  Barry J. Richmond,et al.  Consistency of Encoding in Monkey Visual Cortex , 2001, The Journal of Neuroscience.

[47]  D. Long Probabilistic Models of the Brain. , 2002 .

[48]  J. Kulikowski,et al.  Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque , 2002, The European journal of neuroscience.

[49]  Robert A. Frazor,et al.  Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. , 2002, Journal of neurophysiology.

[50]  F A Wichmann,et al.  Contrast discrimination with sinusoidal gratings of different spatial frequency. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  Allan Gottschalk,et al.  Derivation of the Visual Contrast Response Function by Maximizing Information Rate , 2002, Neural Computation.

[52]  Christopher W Tyler,et al.  Separating the effects of response nonlinearity and internal noise psychophysically , 2002, Vision Research.

[53]  Michael S. Landy,et al.  Bayesian modeling of visual perception , 2002 .

[54]  Frorn tltc lepartnent,et al.  SPATIAL CONTRAST ADAPTATION CHARACTERISTICS OF NEURONES RECORDED IN THE CAT ' S VISUAL CORTEX , 2002 .

[55]  R. Freeman,et al.  Oblique effect: a neural basis in the visual cortex. , 2003, Journal of neurophysiology.

[56]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[57]  D. Tolhurst,et al.  Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1) , 2003, Vision Research.

[58]  David J Tolhurst,et al.  Coding of the contrasts in natural images by visual cortex (V1) neurons: a Bayesian approach. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  David J. Heeger,et al.  Neuronal correlates of perception in early visual cortex , 2003, Nature Neuroscience.

[60]  J. A. Movshon,et al.  The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast , 1981, Experimental Brain Research.

[61]  David J. Tolhurst,et al.  Computer simulation of the effects of spike encoding on the representation of natural scene information in visual cortex , 2004 .

[62]  G. Orban,et al.  The response variability of striate cortical neurons in the behaving monkey , 2004, Experimental Brain Research.

[63]  T. Meese Area summation and masking. , 2004, Journal of vision.

[64]  A. Dean The variability of discharge of simple cells in the cat striate cortex , 2004, Experimental Brain Research.

[65]  D. Tolhurst,et al.  Accuracy of identification of grating contrast by human observers: Bayesian models of V1 contrast processing show correspondence between discrimination and identification performance , 2005, Vision Research.