Memory-Based Shallow Parsing

We present memory-based learning approaches to shallow parsing and apply these to five tasks: base noun phrase identification, arbitrary base phrase recognition, clause detection, noun phrase parsing and full parsing. We use feature selection techniques and system combination methods for improving the performance of the memory-based learner. Our approach is evaluated on standard data sets and the results are compared with that of other systems. This reveals that our approach works well for base phrase identification while its application towards recognizing embedded structures leaves some room for improvement.

[1]  Kenneth Ward Church A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text , 1988, Applied Natural Language Processing Conference.

[2]  S. T. Buckland,et al.  Computer-Intensive Methods for Testing Hypotheses. , 1990 .

[3]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[4]  Howard C. Nusbaum,et al.  Pronounce : a program for pronunciation by analogy , 1991 .

[5]  Steven Abney,et al.  Parsing By Chunks , 1991 .

[6]  Robert C. Berwick,et al.  Principle-Based Parsing: Computation and Psycholinguistics , 1991 .

[7]  E. Brill A Simple Rule-Based Part of Speech Tagger , 1992, Applied Natural Language Processing Conference.

[8]  Eric Brill,et al.  A Simple Rule-Based Part of Speech Tagger , 1992, HLT.

[9]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[10]  Walter Daelemans,et al.  Memory-based lexical acquisition and processing , 1993, EAMT.

[11]  Eric Brill,et al.  Some Advances in Transformation-Based Part of Speech Tagging , 1994, AAAI.

[12]  Walter Daelemans,et al.  The Acquisition of Stress: A Data-Oriented Approach , 1994, Comput. Linguistics.

[13]  David M. Magerman Natural Language Parsing as Statistical Pattern Recognition , 1994, ArXiv.

[14]  David W. Aha,et al.  Feature Selection for Case-Based Classification of Cloud Types: An Empirical Comparison , 1994 .

[15]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[16]  Rich Caruana,et al.  Greedy Attribute Selection , 1994, ICML.

[17]  Claire Cardie,et al.  Domain-specific knowledge acquisition for conceptual sentence analysis , 1995 .

[18]  Mitchell P. Marcus,et al.  Text Chunking using Transformation-Based Learning , 1995, VLC@ACL.

[19]  David M. Magerman Statistical Decision-Tree Models for Parsing , 1995, ACL.

[20]  Walter Daelemans,et al.  MBT: A Memory-Based Part of Speech Tagger-Generator , 1996, VLC@COLING.

[21]  François Yvon Prononcer par analogie : motivation, formalisation et evaluation , 1996 .

[22]  David S. Day,et al.  Finite-state phrase parsing by rule sequences , 1996, COLING.

[23]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Model for Part-Of-Speech Tagging , 1996, EMNLP.

[24]  Judith L. Klavans,et al.  Book Reviews: The Balancing Act: Combining Symbolic and Statistical Approaches to Language , 1997, CL.

[25]  Walter Daelemans,et al.  Resolving PP attachment Ambiguities with Memory-Based Learning , 1997, CoNLL.

[26]  Eugene Charniak,et al.  Statistical Parsing with a Context-Free Grammar and Word Statistics , 1997, AAAI/IAAI.

[27]  Walter Daelemans,et al.  Memory-Based Learning: Using Similarity for Smoothing , 1997, ACL.

[28]  Adwait Ratnaparkhi,et al.  A Linear Observed Time Statistical Parser Based on Maximum Entropy Models , 1997, EMNLP.

[29]  Jorn Veenstra Sabine Buchholz Fast NP Chunking Using Memory-Based Learning Techniques , 1998 .

[30]  Mitchell P. Marcus,et al.  Maximum entropy models for natural language ambiguity resolution , 1998 .

[31]  Walter Daelemans,et al.  TiMBL: Tilburg Memory-Based Learner, version 2.0, Reference guide , 1998 .

[32]  S. Buchholz,et al.  Distinguishing complements from adjuncts using memory-based learning , 1998 .

[33]  Claire Cardie,et al.  Error-Driven Pruning of Treebank Grammars for Base Noun Phrase Identification , 1998, ACL.

[34]  Erik F. Tjong Kim Sang,et al.  Representing Text Chunks , 1999, EACL.

[35]  Miles Osborne,et al.  MDL-based DCG Induction for NP Identification , 1999, CoNLL.

[36]  Shlomo Argamon,et al.  A Memory-Based Approach to Learning Shallow Natural Language Patterns , 1999, COLING.

[37]  Walter Daelemans,et al.  Introduction to the special issue on memory-based language processing , 1999, J. Exp. Theor. Artif. Intell..

[38]  Thorsten Brants,et al.  Cascaded Markov Models , 1999, EACL.

[39]  Gregory Grefenstette Light parsing as finite state filtering , 1999 .

[40]  Dan Roth,et al.  A Learning Approach to Shallow Parsing , 1999, EMNLP.

[41]  Walter Daelemans,et al.  Machine learning for modeling Dutch pronunciation variation , 1999, CLIN.

[42]  Walter Daelemans,et al.  Applying System Combination to Base Noun Phrase Identification , 2000, COLING.

[43]  Jian Su,et al.  Hybrid Text Chunking , 2000, CoNLL/LLL.

[44]  Erik F. Tjong Kim Sang,et al.  Transforming a Chunker to a Parser , 2000, CLIN.

[45]  Erik F. Tjong Kim Sang Noun Phrase Recognition by System Combination , 2000, ANLP.

[46]  Hervé Déjean Learning Syntactic Structures with XML , 2000, CoNLL/LLL.

[47]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[48]  Erik F. Tjong Kim Sang,et al.  Noun Phrase Recognition by System Combination , 2000, ANLP.

[49]  Erik F. Tjong Kim Sang,et al.  Text Chunking by System Combination , 2000, CoNLL/LLL.

[50]  Yuji Matsumoto,et al.  Use of Support Vector Learning for Chunk Identification , 2000, CoNLL/LLL.

[51]  Alexander S. Yeh,et al.  More accurate tests for the statistical significance of result differences , 2000, COLING.

[52]  Sabine Buchholz,et al.  Introduction to the CoNLL-2000 Shared Task Chunking , 2000, CoNLL/LLL.

[53]  Rens Bod,et al.  Parsing with the Shortest Derivation , 2000, COLING.

[54]  Hans van Halteren Chunking with WPDV Models , 2000, CoNLL/LLL.

[55]  Ido Dagan,et al.  Incorporating Compositional Evidence in Memory-Based Partial Parsing , 2000, ACL.

[56]  Walter Daelemans,et al.  Improving Accuracy in word class tagging through the Combination of Machine Learning Systems , 2001, CL.

[57]  James Hammerton Clause identification with long short-term memory , 2001, CoNLL.

[58]  Erik F. Tjong Kim Sang,et al.  Memory-based clause identification , 2001, CoNLL.

[59]  Ferran Plà,et al.  Clause detection using HMM , 2001, CoNLL.

[60]  Hervé Déjean,et al.  Introduction to the CoNLL-2001 shared task: clause identification , 2001, CoNLL.

[61]  Tong Zhang,et al.  Text Chunking using Regularized Winnow , 2001, ACL.

[62]  Jon D. Patrick,et al.  Boosted decision graphs for NLP learning tasks , 2001, CoNLL.

[63]  Xavier Carreras,et al.  Boosting trees for clause splitting , 2001, CoNLL.

[64]  Yuji Matsumoto,et al.  Chunking with Support Vector Machines , 2001, NAACL.

[65]  Michele Banko,et al.  Scaling to Very Very Large Corpora for Natural Language Disambiguation , 2001, ACL.

[66]  Hervé Déjean Using ALLiS for clausing , 2001, CoNLL.

[67]  Rens Bod What is the Minimal Set of Fragments that Achieves Maximal Parse Accuracy? , 2001, ACL.

[68]  Steven Abney,et al.  Statistical Methods and Linguistics , 2002 .

[69]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[70]  Walter Daelemans,et al.  Forgetting Exceptions is Harmful in Language Learning , 1998, Machine Learning.