Optimal uncoded regeneration for binary antipodal signaling

We derive, for a binary antipodal input signal, the optimal uncoded regenerator function when the channels at the ingress and at the egress of the regenerator are degraded by AWGN. We show that the optimal function is a Lambert W function parametrized on the energies of the noises and the input. For comparison, we derive the performance of systems in which the regenerator uses a hard limiter or an amplifier.

[1]  B. Landousies,et al.  All-optical regeneration , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[2]  J. J. Jones,et al.  Hard-limiting of two signals in random noise , 1963, IEEE Trans. Inf. Theory.

[3]  James E. Mazo,et al.  On a nonlinear problem involving RC noise , 1973, IEEE Trans. Inf. Theory.

[4]  I. Bar-David,et al.  On the Degradation of Hard-Limiting Systems by Sampling , 1977, IEEE Trans. Commun..

[5]  William Sollfrey,et al.  Hard limiting of three and four sinusoidal signals , 1969, IEEE Trans. Inf. Theory.

[6]  Ofer Zeitouni On the filtering of noise-contaminated signals observed via hard limiters , 1988, IEEE Trans. Inf. Theory.

[7]  Bruno Lavigne,et al.  New 10 Gbit/s 3R NRZ optical regenerative interface based on semiconductor optical amplifiers for all-optical networks , 1997 .

[8]  Stavros Iezekiel,et al.  Regeneration of optical frequency-shift-keying signal using self-pulsating and self-oscillating mechanisms in laser diodes , 2000, LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings. 13th Annual Meeting. IEEE Lasers and Electro-Optics Society 2000 Annual Meeting (Cat. No.00CH37080).

[9]  Arnold J. F. Siegert,et al.  A systematic approach to a class of problems in the theory of noise and other random phenomena-III: Examples , 1957, IRE Trans. Inf. Theory.

[10]  R. Weiss,et al.  A Digital Hybrid Transmission System for 280 Mbits/s and 560 Mbits/s , 1975, IEEE Trans. Commun..

[11]  Arnold J. F. Siegert,et al.  A systematic approach to a class of problems in the theory of noise and other random phenomena-I , 1957, IRE Trans. Inf. Theory.

[12]  G. Morthier,et al.  Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[13]  Pravin C. Jain,et al.  Limiting of signals in random noise , 1972, IEEE Transactions on Information Theory.

[14]  R. Lyons The Effect of a Bandpass Nonlinearity on Signal Detectability , 1973, IEEE Trans. Commun..

[15]  N. Blachman,et al.  The Effect of a Nonlinearity upon Signals in the Presence of Noise , 1973, IEEE Trans. Commun..

[16]  Roberto Gaudino,et al.  MOSAIC: a multiwavelength optical subcarrier multiplexed controlled network , 1998, IEEE J. Sel. Areas Commun..

[17]  Lee D. Davisson,et al.  On the distribution and moments of RC -filtered hard-limited RC -filtered white noise , 1973, IEEE Trans. Inf. Theory.

[18]  Erwan Pincemin,et al.  Dense WDM (0.27 bit/s/Hz) 4 × 40 Gbit/s dispersion-managed transmission over 10000 km with in-line optical regeneration by channel pairs , 2000 .

[19]  O. Leclerc,et al.  Analysis of 2R optical regenerator utilising self-phase modulation in highly nonlinear fibre , 2002 .

[20]  M. Medard,et al.  BER analysis of low-rate communications through a single electro-optic R2 nonlinear regenerator , 1998, Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Conference Edition. 1998 Technical Digest Series, Vol.6 (IEEE Cat. No.98CH36178).

[21]  P. Ohlen,et al.  Noise accumulation and BER estimates in concatenated nonlinear optoelectronic repeaters , 1997, IEEE Photonics Technology Letters.