Solving global optimization problems on GPU cluster

The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

[1]  B J Fregly,et al.  Parallel global optimization with the particle swarm algorithm , 2004, International journal for numerical methods in engineering.

[2]  Yaroslav D. Sergeyev,et al.  A univariate global search working with a set of Lipschitz constants for the first derivative , 2009, Optim. Lett..

[3]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[4]  Yaroslav D. Sergeyev,et al.  Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization , 2003, TOMS.

[5]  Victor P. Gergel A Global Optimization Algorithm for Multivariate Functions with Lipschitzian First Derivatives , 1997, J. Glob. Optim..

[6]  Yaroslav D. Sergeyev,et al.  A global optimization technique for checking parametric robustness , 1999, Autom..

[7]  Y. Sergeyev,et al.  Parallel Asynchronous Global Search and the Nested Optimization Scheme , 2001 .

[8]  Vladimir A. Grishagin,et al.  Parallel Characteristical Algorithms for Solving Problems of Global Optimization , 1997, J. Glob. Optim..

[9]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[10]  Roman G. Strongin,et al.  Global multidimensional optimization on parallel computer , 1992, Parallel Comput..

[11]  Julius Zilinskas,et al.  Parallel branch and bound for global optimization with combination of Lipschitz bounds , 2011, Optim. Methods Softw..

[12]  V. A. Grishagin,et al.  A parallel method for finding the global minimum of univariate functions , 1994 .

[13]  Yaroslav D. Sergeyev,et al.  Lipschitz gradients for global optimization in a one-point-based partitioning scheme , 2012, J. Comput. Appl. Math..

[14]  Arthur R. Butz,et al.  Space Filling Curves and Mathematical Programming , 1968, Inf. Control..

[15]  Dick den Hertog,et al.  One-dimensional nested maximin designs , 2010, J. Glob. Optim..

[16]  Y. Sergeyev,et al.  Lipschitz and Hölder global optimization using space-filling curves , 2010 .

[17]  Y. Sergeyev,et al.  Sequential and parallel algorithms for global minimizing functions with Lipschitzian derivatives , 1999 .

[18]  Vladimir A. Grishagin,et al.  Local Tuning in Nested Scheme of Global Optimization , 2015, ICCS.

[19]  Yaroslav D. Sergeyev,et al.  Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints , 2001, J. Glob. Optim..

[20]  Li Zheng,et al.  PGO: A parallel computing platform for global optimization based on genetic algorithm , 2007, Comput. Geosci..