Reprint of

The shape and center of mass of a part are crucial parameters to algorithms for planning automated manufacturing tasks. As industrial parts are generally manufactured to tolerances, the shape is subject to variations, which, in turn, also cause variations in the location of the center of mass. Planning algorithms should take into account both types of variation to prevent failure when the resulting plans are applied to manufactured incarnations of a model part.We study the relation between variation in part shape and variation in the location of the center of mass for a part with uniform mass distribution. We consider a general model for shape variation that only assumes that every valid instance contains a shape P I while it is contained in another shape P E . We characterize the worst-case displacement of the center of mass in a given direction in terms of P I and P E . The characterization allows us to determine an adequate polytopic approximation of the locus of the center of mass. We also show that the worst-case displacement is small if P I is convex and fat and the distance between the boundary of P E and P I is bounded.

[1]  P. Hammer The centroid of a convex body , 1951 .

[2]  Quantum chaos for the radially vibrating spherical billiard. , 2000, Chaos.

[3]  Matthew T. Mason,et al.  Orienting Toleranced Polygonal Parts , 2000, Int. J. Robotics Res..

[4]  Franck Barthe,et al.  The BrunnMinkowski theorem and related geometric and functional inequalities , 2006 .

[5]  Dominique Collon,et al.  Near Eastern Seals , 1990 .

[6]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[7]  Charles L. Seitz,et al.  Myrinet: A Gigabit-per-Second Local Area Network , 1995, IEEE Micro.

[8]  Bernard Tourancheau,et al.  BIP: A New Protocol Designed for High Performance Networking on Myrinet , 1998, IPPS/SPDP Workshops.

[9]  Boris Aronov,et al.  Unions of Fat Convex Polytopes Have Short Skeletons , 2012, Discret. Comput. Geom..

[10]  Z. Rudnick Quantum Chaos? , 2007 .

[11]  Mark de Berg,et al.  Realistic Input Models for Geometric Algorithms , 2002, Algorithmica.

[12]  Roger G. Johnston,et al.  Were ancient seals secure? , 2001, Antiquity.

[13]  James T. Kajiya,et al.  A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra , 1984, IEEE Computer Graphics and Applications.

[14]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[15]  Jean-Marie Morvan,et al.  Generalized Curvatures , 2008, Geometry and Computing.

[16]  Prosenjit Bose,et al.  On the Stretch Factor of the Theta-4 Graph , 2013, WADS.

[17]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[18]  Mason A. Porter,et al.  Nonadiabatic dynamics in semiquantal physics , 2001, nlin/0107042.

[19]  Mark H. Overmars,et al.  Range Searching and Point Location among Fat Objects , 1996, J. Algorithms.

[20]  Prosenjit Bose,et al.  The θ 5-Graph is a Spanner , 2013, WG.

[21]  Mark H. Overmars,et al.  Computing fence designs for orienting parts , 1998, Comput. Geom..

[22]  E. Lieb,et al.  Quantum Dots , 2019, Encyclopedia of Color Science and Technology.

[23]  D. Collon First Impressions: Cylinder Seals in the Ancient Near East , 1988 .

[24]  R. G. Johnston,et al.  Improved Security Via ''Town Crier'' Monitoring , 2003 .

[25]  Nicolas Bonichon,et al.  Connections between Theta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces , 2010, WG.

[26]  Dmitry Berenson,et al.  Toward cloud-based grasping with uncertainty in shape: Estimating lower bounds on achieving force closure with zero-slip push grasps , 2012, 2012 IEEE International Conference on Robotics and Automation.

[27]  Paul L. McEuen,et al.  Nano-mechanical oscillations in a single-C 60 transistor , 2022 .

[28]  William L. Simon,et al.  The Art of Intrusion: The Real Stories Behind the Exploits of Hackers, Intruders & Deceivers , 2005 .

[29]  Mirela Damian,et al.  Undirected connectivity of sparse Yao graphs , 2011, FOMC '11.

[30]  Prosenjit Bose,et al.  On the Spanning Ratio of Theta-Graphs , 2013, WADS.

[31]  R. G. Johnston The 'Anti-Evidence' Approach to Tamper Detection , 2005 .

[32]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[33]  Kaufman,et al.  Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation. , 1988, Physical review. A, General physics.

[34]  Maarten Löffler,et al.  Data Imprecision in Computational Geometry , 2009 .

[35]  El Molla,et al.  Yao spanners for wireless ad hoc networks , 2009 .

[36]  Marie Faerber,et al.  Celestial Encounters The Origins Of Chaos And Stability , 2016 .

[37]  Ian I. Mitroff,et al.  Corporate Tragedies: Product Tampering, Sabotage, and Other Catastrophes , 1984 .

[38]  Claire Mayhew,et al.  The Detection and Prevention of Cargo Theft , 2001 .

[39]  Ren-Hong Wang,et al.  On computational geometry , 2003 .

[40]  Roger G. Johnston,et al.  Tamper detection for safeguards and treaty monitoring: Fantasies, realities, and potentials , 2001 .

[41]  Prosenjit Bose,et al.  Optimal Bounds on Theta-Graphs: More is not Always Better , 2012, CCCG.

[42]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[43]  Leo Joskowicz,et al.  Tolerance envelopes of planar mechanical parts with parametric tolerances , 2005, Comput. Aided Des..

[44]  Thomas R. Gross,et al.  Global address space, non-uniform bandwidth: a memory system performance characterization of parallel systems , 1997, Proceedings Third International Symposium on High-Performance Computer Architecture.

[45]  Bruce Randall Donald,et al.  Error Detection and Recovery in Robotics , 1989, Lecture Notes in Computer Science.

[46]  C. R. Liu,et al.  Review of dimensioning and tolerancing: representation and processing , 1991, Comput. Aided Des..

[47]  R. Richardson The International Congress of Mathematicians , 1932, Science.

[48]  Doug Ierardi,et al.  The complexity of oblivious plans for orienting and distinguishing polygonal parts , 2005, Algorithmica.

[49]  Aristides A. G. Requicha,et al.  Toward a Theory of Geometric Tolerancing , 1983 .

[50]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[51]  R. Jensen CHAOS IN ATOMIC PHYSICS , 1987 .

[52]  Matthew T. Mason,et al.  Posing Polygonal Objects in the Plane by Pushing , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[53]  Thomas R. Gross,et al.  Optimizing memory system performance for communication in parallel computers , 1995, Proceedings 22nd Annual International Symposium on Computer Architecture.

[54]  Randy C. Brost,et al.  Automatic Grasp Planning in the Presence of Uncertainty , 1988, Int. J. Robotics Res..

[55]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[56]  Dominique Collon,et al.  7000 Years of Seals , 1997 .

[57]  Robert W. Numrich,et al.  Measurement of Communication Rates on the Cray T3D Interprocessor Network , 1994, HPCN.

[58]  Mark H. Overmars,et al.  Orienting polyhedral parts by pushing , 2002, Comput. Geom..

[59]  Leonidas J. Guibas,et al.  The Centroid of Points with Approximate Weights , 1995, ESA.

[60]  Corporate IEEE Standard for Scalable Coherent Interface, Science: IEEE Std. 1596-1992 , 1993 .

[61]  Mark H. Overmars,et al.  Shape tolerance in feeding and fixturing , 1998 .

[62]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[63]  A. Frank van der Stappen,et al.  Motion planning amidst fat obstacles , 1993 .

[64]  J. Mark Keil,et al.  Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.

[65]  Kevin M. Lynch,et al.  Locally controllable manipulation by stable pushing , 1999, IEEE Trans. Robotics Autom..

[66]  Micha Sharir,et al.  Efficient Hidden Surface Removal for Objects with Small Union Size , 1992, Comput. Geom..

[67]  Siddhartha S. Srinivasa,et al.  A Framework for Push-Grasping in Clutter , 2011, Robotics: Science and Systems.

[68]  R. Biggs,et al.  Seals and Sealing in the Ancient Near East , 1978 .