Studying the Perturbed Wess-Zumino-Novikov-Witten SU(2)k Theory Using the Truncated Conformal Spectrum Approach

[1]  P. Lecheminant,et al.  Two-leg SU ( 2 n ) spin ladder: A low-energy effective field theory approach , 2015, 1502.04515.

[2]  S. Rychkov,et al.  Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory? , 2015 .

[3]  K. Totsuka,et al.  Phase diagrams of one-dimensional half-filled two-orbital SU(N) cold fermion systems , 2014, 1410.2974.

[4]  J. Misewich,et al.  Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis , 2014, 1403.2472.

[5]  S. Rychkov,et al.  A Cheap Alternative to the Lattice , 2014, 1409.1581.

[6]  A. Tsvelik,et al.  Analytically tractable model of bad metals , 2013, 1303.7448.

[7]  R. Konik,et al.  Truncated conformal space approach for perturbed Wess-Zumino-Witten SU(2)(k) models , 2013, 1301.0084.

[8]  G. Kotliar,et al.  Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: Insights from first-principles calculations , 2012, 1206.0801.

[9]  R. Konik,et al.  Constructing the generalized Gibbs ensemble after a quantum quench. , 2012, Physical review letters.

[10]  G. Roux,et al.  Competing orders in one-dimensional half-filled multicomponent fermionic cold atoms: The Haldane-charge conjecture , 2011, 1107.0171.

[11]  R. Konik Exciton hierarchies in gapped carbon nanotubes. , 2010, Physical review letters.

[12]  R. Konik,et al.  Numerical renormalization group for continuum one-dimensional systems. , 2007, Physical review letters.

[13]  G. Mussardo Neutral bound states in kink-like theories , 2006, hep-th/0607025.

[14]  G. Takács,et al.  Characterization of resonances using finite size effects , 2006, hep-th/0604022.

[15]  G. Mussardo,et al.  Decay of particles above threshold in the Ising field theory with magnetic field , 2005, hep-th/0507133.

[16]  A. Ludwig,et al.  Interplay of the scaling limit and the renormalization group: Implications for symmetry restoration , 2000, cond-mat/0009166.

[17]  A. Zamolodchikov,et al.  Ising Field Theory in a Magnetic Field: Analytic Properties of the Free Energy , 2001, hep-th/0112167.

[18]  G. Takács,et al.  Nonperturbative study of the two-frequency sine-Gordon model , 2000, hep-th/0008066.

[19]  G. Takács,et al.  The k -folded sine-Gordon model in finite volume , 2000, hep-th/0004181.

[20]  G. Mussardo,et al.  Non-integrable aspects of the multi-frequency Sine-Gordon model , 1997, hep-th/9709028.

[21]  M. Fisher,et al.  N-chain Hubbard model in weak coupling , 1997, cond-mat/9703055.

[22]  G. Mussardo,et al.  NON-INTEGRABLE QUANTUM FIELD THEORIES AS PERTURBATIONS OF CERTAIN INTEGRABLE MODELS , 1996, hep-th/9603011.

[23]  Shelton,et al.  Antiferromagnetic spin ladders: Crossover between spin S=1/2 and S=1 chains. , 1995, Physical review. B, Condensed matter.

[24]  Fisher,et al.  Weak-coupling phase diagram of the two-chain Hubbard model. , 1995, Physical review. B, Condensed matter.

[25]  F. Smirnov A New set of exact form-factors , 1993, hep-th/9312039.

[26]  V. Fateev,et al.  Integrable perturbations of ZN parafermion models and the O(3) sigma model , 1991 .

[27]  V. Yurov,et al.  Truncated fermionic space approach to the critical 2-D Ising model with magnetic field , 1991 .

[28]  V. Fateev INTEGRABLE DEFORMATIONS IN ZN-SYMMETRICAL MODELS OF THE CONFORMAL QUANTUM FIELD THEORY , 1991 .

[29]  J. Cardy,et al.  The scaling region of the tricritical Ising model in two dimensions , 1991 .

[30]  Tsvelik Field-theory treatment of the Heisenberg spin-1 chain. , 1990, Physical review. B, Condensed matter.

[31]  I. Affleck Critical behaviour of SU( n) quantum chains and topological non-linear σ-models , 1988 .

[32]  J. Cardy CORRIGENDUM: Logarithmic corrections to finite-size scaling in strips , 1986 .

[33]  V. Fateev,et al.  Operator Algebra and Correlation Functions in the Two-Dimensional Wess-Zumino SU(2) x SU(2) Chiral Model , 1986 .

[34]  P. Wiegmann Exact solution of the O(3) nonlinear σ-model , 1985 .

[35]  P. Wiegmann Exact solution of the O(3) nonlinear two-dimensional sigma-model , 1985 .

[36]  Alexander B. Zamolodchikov,et al.  Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models , 1979 .

[37]  Brosl Hasslacher,et al.  Particle spectrum in model field theories from semiclassical functional integral techniques , 1975 .