On Maximum Rank Aggregation Problems

The rank aggregation problem consists in finding a consensus ranking on a set of alternatives, based on the preferences of individual voters. These are expressed by permutations, whose distance can be measured in many ways.

[1]  Rolf Niedermeier,et al.  Fixed-Parameter Algorithms for CLOSEST STRING and Related Problems , 2003, Algorithmica.

[2]  Franz-Josef Brandenburg,et al.  Comparing and Aggregating Partial Orders with Kendall Tau Distances , 2012, WALCOM.

[3]  Franz-Josef Brandenburg,et al.  The Nearest Neighbor Spearman Footrule Distance for Bucket, Interval, and Partial Orders , 2011, FAW-AAIM.

[4]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[5]  Claire Mathieu,et al.  Electronic Colloquium on Computational Complexity, Report No. 144 (2006) How to rank with few errors A PTAS for Weighted Feedback Arc Set on Tournaments , 2006 .

[6]  Richard M. Karp,et al.  Complexity of Computation , 1974 .

[7]  Xiaotie Deng,et al.  On the complexity of crossings in permutations , 2009, Discret. Math..

[8]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[9]  Nir Ailon,et al.  Aggregation of Partial Rankings, p-Ratings and Top-m Lists , 2007, SODA '07.

[10]  L. Bergroth,et al.  A survey of longest common subsequence algorithms , 2000, Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000.

[11]  Tayuan Huang,et al.  Metrics on Permutations, a Survey , 2004 .

[12]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[13]  Rolf Niedermeier,et al.  Fixed-parameter algorithms for Kemeny rankings , 2009, Theor. Comput. Sci..

[14]  Ami Litman,et al.  On covering problems of codes , 1997, Theory of Computing Systems.

[15]  Patricia Rose Gomes de Melo Viol Martins,et al.  MATHEMATICS WITHOUT NUMBERS: AN INTRODUCTION TO THE STUDY OF LOGIC , 2015 .

[16]  Marek Karpinski,et al.  Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament , 2010, ISAAC.

[17]  D. Critchlow Metric Methods for Analyzing Partially Ranked Data , 1986 .

[18]  W. Knight A Computer Method for Calculating Kendall's Tau with Ungrouped Data , 1966 .

[19]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[20]  Ronald Fagin,et al.  Comparing Partial Rankings , 2006, SIAM J. Discret. Math..

[21]  M. Trick,et al.  Voting schemes for which it can be difficult to tell who won the election , 1989 .

[22]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.