Validation of Solar Radiation Surfaces from MODIS and Reanalysis Data over Topographically Complex Terrain

Abstract The magnitude and distribution of incoming shortwave solar radiation (SW↓) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land surface. This paper presents a validation of monthly average total (SW↓t) and diffuse ( SW↓df ) incoming solar radiation surfaces taken from North American Regional Reanalysis (NARR) data and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery for a mountainous region of the Pacific northwestern United States and Canada. A topographic solar radiation model based on a regionally defined clearness index was used to downscale the 32-km NARR SW↓t surfaces to 1 km, resulting in surfaces that better matched the spatial resolution of MODIS, as well as accounted for elevation and terrain effects including shadowing. Va...

[1]  Shunlin Liang,et al.  Estimation of daily-integrated PAR from sparse satellite observations: comparison of temporal scaling methods , 2010 .

[2]  Peng Gong,et al.  Using local transition probability models in Markov random fields for forest change detection , 2008 .

[3]  Shunlin Liang,et al.  Mapping incident photosynthetically active radiation from MODIS data over China , 2008 .

[4]  Shunlin Liang,et al.  Estimation of Incident Photosynthetically Active Radiation from GOES Visible Imagery , 2008 .

[5]  Flurin Babst,et al.  Verification of NCEP Reanalysis Shortwave Radiation With Mesoscale Remote Sensing Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[6]  C. Brodersen,et al.  A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. , 2007, Plant, cell & environment.

[7]  Keith W. Oleson,et al.  Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations , 2006 .

[8]  Hongliang Fang,et al.  Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data , 2006 .

[9]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[10]  D. Spittlehouse,et al.  Development of scale‐free climate data for Western Canada for use in resource management , 2006 .

[11]  Maosheng Zhao,et al.  Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses , 2006 .

[12]  Tongli Wang,et al.  Models of climatic normals for genecology and climate change studies in British Columbia , 2005 .

[13]  Kenneth B. Pierce,et al.  A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis , 2005, Landscape Ecology.

[14]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[15]  Patrick E. Van Laake,et al.  Simplified atmospheric radiative transfer modelling for estimating incident PAR using MODIS atmosphere products , 2004 .

[16]  Jerald A. Brotzge,et al.  A Two-Year Comparison of the Surface Water and Energy Budgets between Two OASIS Sites and NCEP–NCAR Reanalysis Data , 2004 .

[17]  Michael A. Lefsky,et al.  Monitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling , 2004, Environmental management.

[18]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[19]  Peter E. Thornton,et al.  Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests , 2002 .

[20]  P. Ineichen,et al.  A new operational model for satellite-derived irradiances: description and validation , 2002 .

[21]  T. Vesala,et al.  Advantages of diffuse radiation for terrestrial ecosystem productivity , 2002 .

[22]  Paul W. Stackhouse,et al.  The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0 , 2001 .

[23]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[24]  N. Coops,et al.  Estimating mean monthly incident solar radiation on horizontal and inclined slopes from mean monthly temperatures extremes , 2000, International journal of biometeorology.

[25]  Stanley G. Benjamin,et al.  Assessment of land-surface energy budgets from regional and global models , 1999 .

[26]  S. Running,et al.  An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation , 1999 .

[27]  A. J. Miller,et al.  Evaluation of the Earth Radiation Budget in NCEP–NCAR Reanalysis with ERBE , 1999 .

[28]  Kevin E. Trenberth,et al.  Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses , 1998 .

[29]  K. Mitchell,et al.  Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data , 1997 .

[30]  T. Black,et al.  Implementation of the Cloud Prediction Scheme in the Eta Model at NCEP , 1997 .

[31]  R. Waring,et al.  A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning , 1997 .

[32]  R. Dubayah,et al.  Modeling Topographic Solar Radiation Using GOES Data , 1997 .

[33]  David O. Wallin,et al.  Two Decades of Carbon Flux from Forests of the Pacific Northwest , 1996 .

[34]  F. Vignola,et al.  Comparisons with a rotating shadowband pyranometer , 1996 .

[35]  Song-You Hong,et al.  Comparison of NCEP-NCAR Reanalysis with 1987 FIFE Data , 1996 .

[36]  Ralph Dubayah,et al.  Topographic Solar Radiation Models for GIS , 1995, Int. J. Geogr. Inf. Sci..

[37]  R. Dubayah Modeling a solar radiation topoclimatology for the Rio Grande River Basin , 1994 .

[38]  T. Black The new NMC mesoscale Eta Model: description and forecast examples , 1994 .

[39]  R. Dubayah,et al.  The topographic distribution of annual incoming solar radiation in the Rio Grande River basin , 1992 .

[40]  R. Dubayah Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data , 1992 .

[41]  B. Katsoulis A comparison of several diffuse solar radiation models for Greece , 1991 .

[42]  Jr. James Edward Frew The image processing workbench , 1991 .

[43]  J. Dozier,et al.  Rapid Calculation Of Terrain Parameters For Radiation Modeling From Digital Elevation Data , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[44]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[45]  Terry A. Howell,et al.  A Generalized Relationship between Photosynthetically Active Radiation and Solar Radiation1 , 1984 .

[46]  Jeff Dozier,et al.  A clear‐sky spectral solar radiation model for snow‐covered mountainous terrain , 1980 .

[47]  Benjamin Y. H. Liu,et al.  The interrelationship and characteristic distribution of direct, diffuse and total solar radiation , 1960 .

[48]  Amauri Pereira de Oliveira,et al.  Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil , 2002 .

[49]  M. Serreze,et al.  Representation of Mean Arctic Precipitation from NCEP-NCAR and ERA Reanalyses , 2000 .

[50]  Inge Dirmhirn,et al.  Strengths and limitations of the Liu and Jordan model to determine diffuse from global irradiance , 1983 .

[51]  J. Duffie,et al.  Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation , 1982 .

[52]  Shashi,et al.  The Langley Parameterized Shortwave Algorithm ( LPSA ) for Surface Radiation Budget Studies Version 1 . 0 , 2022 .