Rectangular maximum volume and projective volume search algorithms
暂无分享,去创建一个
[1] Ivan V. Oseledets,et al. Rectangular maximum-volume submatrices and their applications , 2015, ArXiv.
[2] Christos Boutsidis,et al. Near-Optimal Column-Based Matrix Reconstruction , 2014, SIAM J. Comput..
[3] Christos Boutsidis,et al. Faster Subset Selection for Matrices and Applications , 2011, SIAM J. Matrix Anal. Appl..
[4] Gene H. Golub,et al. Matrix computations , 1983 .
[5] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[6] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[7] Christos Boutsidis,et al. Optimal CUR matrix decompositions , 2014, STOC.
[8] A. I. Osinsky,et al. On the Existence of a Nearly Optimal Skeleton Approximation of a Matrix in the Frobenius Norm , 2018 .
[9] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[10] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[11] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[12] Rectangular submatrices of maximum volume and their computation , 2015 .
[13] Eugene E. Tyrtyshnikov,et al. A fast numerical method for the Cauchy problem for the Smoluchowski equation , 2015, J. Comput. Phys..
[14] Eugene E. Tyrtyshnikov,et al. Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm , 2011 .
[15] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[16] Alexander Osinsky,et al. Global Optimization Algorithms Using Tensor Trains , 2017, LSSC.