Two-dimensional vortex sheets for the nonisentropic Euler equations: Nonlinear stability

We show the short-time existence and nonlinear stability of vortex sheets for the nonisentropic compressible Euler equations in two spatial dimensions, based on the weakly linear stability result of Morando--Trebeschi (2008) [20]. The missing normal derivatives are compensated through the equations of the linearized vorticity and entropy when deriving higher-order energy estimates. The proof of the resolution for this nonlinear problem follows from certain \emph{a priori} tame estimates on the effective linear problem {in the usual Sobolev spaces} and a suitable Nash--Moser iteration scheme.

[1]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[2]  Yuri Trakhinin,et al.  The Existence of Current-Vortex Sheets in Ideal Compressible Magnetohydrodynamics , 2009 .

[3]  Jacques Chazarain,et al.  Introduction to the theory of linear partial differential equations , 1982 .

[4]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[5]  John W. Miles,et al.  On the stability of a plane vortex sheet with respect to three-dimensional disturbances , 1963, Journal of Fluid Mechanics.

[6]  P. Glendinning Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations , 1994 .

[7]  Jean-François Coulombel,et al.  NONLINEAR COMPRESSIBLE VORTEX SHEETS IN TWO SPACE DIMENSIONS , 2008 .

[8]  Rumen L. Mishkov,et al.  Generalization of the formula of Faa di Bruno for a composite function with a vector argument , 2000 .

[9]  Guy Métivier,et al.  Stability of Multidimensional Shocks , 2001 .

[10]  L. Hörmander,et al.  The boundary problems of physical geodesy , 1976 .

[11]  Tao Wang,et al.  Nonlinear Stability of Relativistic Vortex Sheets in Three-Dimensional Minkowski Spacetime , 2017, Archive for Rational Mechanics and Analysis.

[12]  Fang Yu,et al.  Structural Stability of Supersonic Contact Discontinuities in Three-Dimensional Compressible Steady Flows , 2014, SIAM J. Math. Anal..

[13]  P. Secchi,et al.  Well-posedness of the plasma–vacuum interface problem , 2013, 1301.5238.

[14]  Andrew J. Majda,et al.  Initial‐boundary value problems for hyperbolic equations with uniformly characteristic boundary , 1975 .

[15]  Y. Trakhinin,et al.  Local Existence of MHD Contact Discontinuities , 2015, 1612.04123.

[16]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[17]  Paolo Secchi,et al.  Well-posedness of characteristic symmetric hyperbolic systems , 1996 .

[18]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[19]  A. Morando,et al.  Weakly well posed hyperbolic initial-boundary value problems with non characteristic boundary , 2013 .

[20]  A. Majda,et al.  The stability of multidimensional shock fronts , 1983 .

[21]  Jean-François Coulombel,et al.  Well-posedness of hyperbolic initial boundary value problems , 2005 .

[22]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[23]  Gui-Qiang Chen,et al.  Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics , 2006 .

[24]  S. Alinhac,et al.  Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .

[25]  A. Majda,et al.  The existence of multidimensional shock fronts , 1983 .

[26]  Jean-François Coulombel,et al.  Weakly stable multidimensional shocks , 2004 .

[27]  Jacques Francheteau,et al.  Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels , 1998, Astérisque.

[28]  A. Morando,et al.  Stability of contact discontinuities for the nonisentropic Euler equations , 2004, ANNALI DELL UNIVERSITA DI FERRARA.

[29]  John W. Miles,et al.  On the disturbed motion of a plane vortex sheet , 1958, Journal of Fluid Mechanics.

[30]  F. Massey,et al.  Differentiability of solutions to hyperbolic initial-boundary value problems , 1974 .