Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk

It is proved that every dynamic Monte Carlo algorithm for the self-avoiding walk based on a finite repertoire of local,N-conserving elementary moves is nonergodic (hereN is the number of bonds in the walk). Indeed, for largeN, each ergodic class forms an exponentially small fraction of the whole space. This invalidates (at least in principle) the use of the Verdier-Stockmayer algorithm and its generalizations for high-precision Monte Carlo studies of the self-avoiding walk.

[1]  Sergio Caracciolo,et al.  Polymers and g|φ|4 theory in four dimensions , 1983 .

[2]  Walter H. Stockmayer,et al.  Effect of variable excluded volume on dynamics of lattice chains , 1984 .

[3]  Harry Kesten,et al.  On the Number of Self‐Avoiding Walks , 1963 .

[4]  Walter H. Stockmayer,et al.  Monte Carlo Calculations on the Dynamics of Polymers in Dilute Solution , 1962 .

[5]  C. Domb Excluded‐Volume Effect for Two‐ and Three‐Dimensional Lattice Models , 1963 .

[6]  Kurt Binder,et al.  Monte Carlo studies on the freely jointed polymer chain with excluded volume interaction , 1979 .

[7]  S. I. Rubinow Mathematical Problems in the Biological Sciences , 1987 .

[8]  Keizo Suzuki,et al.  The Excluded Volume Effect of Very-long-chain Molecules , 1968 .

[9]  F. W. Wiegel,et al.  On the topology of a polymer ring , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  F. T. Wall,et al.  Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition , 1975 .

[11]  O. J. Heilmann,et al.  Exact and Monte Carlo computations on a lattice model for change of conformation of a polymer , 1982 .

[12]  Melvin Lax,et al.  Monte Carlo study of lattice polymer dynamics , 1977 .

[13]  Sergio Caracciolo,et al.  A new Monte-Carlo approach to the critical properties of self-avoiding random walks , 1983 .

[14]  Hagai Meirovitch,et al.  Efficient dynamical Monte Carlo method for dense polymer systems , 1984 .

[15]  F. T. Wall,et al.  New Method for the Statistical Computation of Polymer Dimensions , 1959 .

[16]  J. Hammersley,et al.  FURTHER RESULTS ON THE RATE OF CONVERGENCE TO THE CONNECTIVE CONSTANT OF THE HYPERCUBICAL LATTICE , 1962 .

[17]  Bernd A. Berg,et al.  Random paths and random surfaces on a digital computer , 1981 .

[18]  J. Hammersley,et al.  Self-avoiding walks in wedges , 1985 .

[19]  F. Mandel,et al.  Macromolecular dimensions obtained by an efficient Monte Carlo method: The mean square end‐to‐end separation , 1979 .

[20]  Naeem Jan,et al.  Polymer conformations through 'wiggling' , 1985 .

[21]  A. Sokal,et al.  New Monte Carlo method for the self-avoiding walk , 1985 .

[22]  P. H. Verdier A simulation model for the study of the motion of random-coil polymer chains , 1969 .

[23]  Z. Alexandrowicz,et al.  Monte Carlo of Chains with Excluded Volume: a Way to Evade Sample Attrition , 1969 .

[24]  Z. Alexandrowicz,et al.  Monte Carlo of Chains with Excluded Volume: Distribution of Intersegmental Distances , 1971 .

[25]  W. Stockmayer,et al.  Local-jump models for chain dynamics , 1971 .

[26]  Sidney Redner,et al.  Position-space renormalisation group for isolated polymer chains? , 1981 .

[27]  S. Caracciolo,et al.  Dynamic critical exponent of some Monte Carlo algorithms for the self-avoiding walk , 1986 .

[28]  Peter H. Verdier,et al.  Monte Carlo Studies of Lattice‐Model Polymer Chains. II. End‐to‐End Length , 1966 .

[29]  David E. Kranbuehl,et al.  Simulation of the relaxation of random‐coil polymer chains by lattice models with excluded volume: The effect of bead movement rules , 1979 .

[30]  Anthony J. Guttmann,et al.  On the critical behaviour of self-avoiding walks , 1987 .

[31]  Jeffrey Kovac,et al.  Effect of bead movement rules on the relaxation of cubic lattice models of polymer chains , 1983 .

[32]  F. Gény,et al.  Simulation du mouvement brownien d'une chaine macromoléculaire par la méthode de Monte-Carlo. , 1969 .

[33]  Kurt Kremer,et al.  Collapse transition and crossover scaling for self-avoiding walks on the diamond lattice , 1982 .

[34]  John M. Deutch,et al.  Analysis of Monte Carlo results on the kinetics of lattice polymer chains with excluded volume , 1975 .

[35]  D. Kranbuehl,et al.  Monte Carlo studies of the relaxation of vector end-to-end length in random-coil polymer chains. , 1972 .