Prequential probability: game-theoretic = measure theoretic

This article continues study of the prequential framework for evaluating a probability forecaster. Testing the hypothesis that the sequence of forecasts issued by the forecaster is in agreement with the observed outcomes can be done using prequential notions of probability. It turns out that there are two natural notions of probability in the prequential framework: game-theoretic, whose idea goes back to von Mises and Ville, and measure-theoretic, whose idea goes back to Kolmogorov. The main result of this article is that, in the case of predicting binary outcomes, the two notions of probability in fact coincide on the analytic sets (in particular, on the Borel sets).

[1]  Akimichi Takemura,et al.  Lévy’s Zero–One Law in Game-Theoretic Probability , 2009, Journal of Theoretical Probability.

[2]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[3]  R. Mises Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .

[4]  Glenn Shafer,et al.  The art of causal conjecture , 1996 .

[5]  V. Vovk A logic of probability, with application to the foundations of statistics , 1993 .

[6]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[7]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[8]  Akimichi Takemura,et al.  On a simple strategy weakly forcing the strong law of large numbers in the bounded forecasting game , 2005, math/0508190.

[9]  Claude Dellacherie Ensembles analytiques, capacités, mesures de Hausdorff , 1972 .

[10]  G. Shafer,et al.  The Sources of Kolmogorov’s Grundbegriffe , 2006, math/0606533.

[11]  A. Dawid The Well-Calibrated Bayesian , 1982 .

[12]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[13]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[14]  G. Choquet Theory of capacities , 1954 .

[15]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[16]  A. Dawid,et al.  Prequential probability: principles and properties , 1999 .

[17]  G. Shafer,et al.  Probability and Finance: It's Only a Game! , 2001 .

[18]  Vladimir Vovk,et al.  Prequential Randomness , 2008, ALT.

[19]  A. Dawid Calibration-Based Empirical Probability , 1985 .

[20]  A. Church On the concept of a random sequence , 1940 .