Semiclassical estimates for eigenvalue means of Laplacians on spheres

We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of $\mathbb S^d$. We also prove a Berezin-Li-Yau inequality for domains contained in the hemisphere $\mathbb S^2_+$. Moreover, we consider polyharmonic operators for which we prove analogous results that highlight the role of dimension for P\'olya-type inequalities. Finally, we provide sum rules for Laplacian eigenvalues on spheres and compact two-point homogeneous spaces.

[1]  Yaiza Canzani,et al.  Weyl remainders: an application of geodesic beams , 2020, Inventiones mathematicae.

[2]  P. Freitas,et al.  Families of non-tiling domains satisfying P\'olya's conjecture , 2022, 2204.08902.

[3]  P. Freitas,et al.  P\'{o}lya-type inequalities on spheres and hemispheres , 2022, 2204.07277.

[4]  B. Colbois,et al.  Neumann Eigenvalues of the Biharmonic Operator on Domains: Geometric Bounds and Related Results , 2019, The Journal of Geometric Analysis.

[5]  David A. Sher,et al.  Pólya’s conjecture for the disk: a computer-assisted proof , 2022 .

[6]  Luigi Provenzano,et al.  On the spectral asymptotics for the buckling problem , 2021, Journal of Mathematical Physics.

[7]  D. Buoso,et al.  Semiclassical bounds for spectra of biharmonic operators. , 2019, 1904.11877.

[8]  R. Frank,et al.  Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[9]  E. Harrell,et al.  Complementary Asymptotically Sharp Estimates for Eigenvalue Means of Laplacians , 2018, International Mathematics Research Notices.

[10]  A. Laptev,et al.  Berezin–Li–Yau inequalities on domains on the sphere , 2017, Journal of Mathematical Analysis and Applications.

[11]  P. Freitas A remark on Pólya’s conjecture at low frequencies , 2018, Archiv der Mathematik.

[12]  D. Buoso,et al.  On the stability of some isoperimetric inequalities for the fundamental tones of free plates , 2016, Journal of Spectral Theory.

[13]  E. Harrell,et al.  Two-term, asymptotically sharp estimates for eigenvalue means of the Laplacian , 2016, Journal of Spectral Theory.

[14]  Daniel J. Arrigo,et al.  An Introduction to Partial Differential Equations , 2017, An Introduction to Partial Differential Equations.

[15]  P. Freitas Asymptotic Behaviour of Extremal Averages of Laplacian Eigenvalues , 2017 .

[16]  D. Buoso Analyticity and Criticality Results for the Eigenvalues of the Biharmonic Operator , 2016, 1603.02923.

[17]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[18]  E. Harrell,et al.  On sums of eigenvalues of elliptic operators on manifolds , 2015, 1507.02632.

[19]  J. Stubbe,et al.  On sums of graph eigenvalues , 2013, 1308.5340.

[20]  R. Frank,et al.  Semi-classical analysis of the Laplace operator with Robin boundary conditions , 2012, 1208.2327.

[21]  Rupert L. Frank,et al.  Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain , 2011, 1105.5182.

[22]  Ari Laptev,et al.  Geometrical Versions of improved Berezin-Li-Yau Inequalities , 2010, 1010.2683.

[23]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[24]  Q. Cheng,et al.  Estimates for eigenvalues on Riemannian manifolds , 2009 .

[25]  E. Harrell,et al.  Trace identities for commutators, with applications to the distribution of eigenvalues , 2009, 0903.0563.

[26]  J. Stubbe Universal monotonicity of eigenvalue moments and sharp Lieb-Thirring inequalities , 2008, 0810.1573.

[27]  L. Hermi,et al.  On Riesz Means of Eigenvalues , 2007, 0712.4088.

[28]  T. Weidl,et al.  Improved Berezin-Li-Yau inequalities with a remainder term , 2007, 0711.4925.

[29]  E. Harrell,et al.  Universal inequalities for the eigenvalues of Laplace and Schr , 2007 .

[30]  E. Harrell,et al.  Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues , 2007, 0705.3673.

[31]  E. Harrell Commutators, Eigenvalue Gaps, and Mean Curvature in the Theory of Schrödinger Operators , 2003, math/0312372.

[32]  A. Melas A lower bound for sums of eigenvalues of the Laplacian , 2002 .

[33]  Ari Laptev,et al.  Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces , 1997 .

[34]  E. Harrell,et al.  On trace identities and universal eigenvalue estimates for some partial differential operators , 1997 .

[35]  Yu Safarov,et al.  The Asymptotic Distribution of Eigenvalues of Partial Differential Operators , 1996 .

[36]  R. Strichartz Estimates for Sums of Eigenvalues for Domains in Homogeneous Spaces , 1996 .

[37]  A. Ilyin Lieb-Thirring Inequalities on the N-Sphere and in the Plane, and Some Applications , 1993 .

[38]  P Kröger,et al.  Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space , 1992 .

[39]  R. Howe,et al.  Review: Sigurdur Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators and spherical functions , 1989 .

[40]  Howard A. Levine,et al.  Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity , 1985 .

[41]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[42]  P. Bérard,et al.  Spectres et groupes cristallographiques. II : domaines sphériques , 1980 .

[43]  Richard B. Melrose,et al.  Weyl''s conjecture for manifolds with concave boundary , 1980 .

[44]  GinéM Evarist,et al.  The addition formula for the eigenfunctions of the Laplacian , 1975 .

[45]  Roman Jackiw,et al.  Intermediate Quantum Mechanics , 1973 .

[46]  F. Berezin COVARIANT AND CONTRAVARIANT SYMBOLS OF OPERATORS , 1972 .

[47]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[48]  Sigurdur Helgason,et al.  The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds , 1965 .

[49]  George Polya,et al.  On the Eigenvalues of Vibrating Membranes(In Memoriam Hermann Weyl) , 1961 .

[50]  G. Pólya Mathematics and Plausible Reasoning , 1956 .

[51]  Hsien-Chtjng Wang,et al.  TWO-POINT HOMOGENEOUS SPACES , 1952 .

[52]  H. Weyl Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgesetze. , 1913 .

[53]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .