A Method to Construct Approximate Fuzzy Voronoi Diagram for Fuzzy Numbers of Dimension Two
暂无分享,去创建一个
[1] Kurt Mehlhorn,et al. How to Compute the Voronoi Diagram of Line Segments: Theoretical and Experimental Results , 1994, ESA.
[2] Mariette Yvinec,et al. The Voronoi Diagram of Convex Objects in the Plane , 2003 .
[3] Bidyut Baran Chaudhuri,et al. Some shape definitions in fuzzy geometry of space , 1991, Pattern Recognit. Lett..
[4] Y. Ku,et al. Introduction to fuzzy arithmetic—theory and applications : Arnold Kaufmann and Madan M. Gupta. 351 pages, diagrams, figures. Van Nostrand Reinhold Company, New York, 1985. , 1986 .
[5] J. J. Buckley,et al. Fuzzy plane geometry II: Circles and polygons , 1997, Fuzzy Sets Syst..
[6] Mohammadreza Jooyandeh,et al. Fuzzy Voronoi Diagram , 2008 .
[7] R. Goetschel,et al. Elementary fuzzy calculus , 1986 .
[8] Mariette Yvinec,et al. The Voronoi Diagram of Planar Convex Objects , 2003, ESA.
[9] Przemyslaw Grzegorzewski,et al. Metrics and orders in space of fuzzy numbers , 1998, Fuzzy Sets Syst..
[10] Sunil Arya,et al. Linear-size approximate voronoi diagrams , 2002, SODA '02.
[11] Seyed Hossein Razavi Hajiagha,et al. A Fuzzy Data Envelopment Analysis Approach based on Parametric Programming , 2013, Int. J. Comput. Commun. Control.
[12] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[13] David G. Kirkpatrick,et al. A compact piecewise-linear voronoi diagram for convex sites in the plane , 1996, Discret. Comput. Geom..
[14] Osamu Takahashi,et al. Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..
[15] Franz Aurenhammer,et al. An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..
[16] Ali Mohades,et al. Uncertain Voronoi diagram , 2009, Inf. Process. Lett..
[17] Debjani Chakraborty,et al. A theoretical development on a fuzzy distance measure for fuzzy numbers , 2006, Math. Comput. Model..