A Method to Construct Approximate Fuzzy Voronoi Diagram for Fuzzy Numbers of Dimension Two

In this paper, we propose an approximate "fuzzy Voronoi" diagram (FVD)for fuzzy numbers of dimension two (FNDT) by designing an extension of crisp Voronoi diagram for fuzzy numbers. The fuzzy Voronoi sites are defined as fuzzy numbers of dimension two. In this approach, the fuzzy numbers have a convex continuous differentiable shape. The proposed algorithm has two stages: in the first stage we use the Fortune’s algorithm in order to construct a "fuzzy Voronoi" diagram for membership values of FNDTs that are equal to 1. In the second stage, we propose a new algorithm based on the Euclidean distance between two fuzzy numbers in order to construct the approximate "fuzzy Voronoi" diagram for values of the membership of FNDTs that are smaller than 1. The experimental results are presented for a particular shape, the fuzzy ellipse numbers.

[1]  Kurt Mehlhorn,et al.  How to Compute the Voronoi Diagram of Line Segments: Theoretical and Experimental Results , 1994, ESA.

[2]  Mariette Yvinec,et al.  The Voronoi Diagram of Convex Objects in the Plane , 2003 .

[3]  Bidyut Baran Chaudhuri,et al.  Some shape definitions in fuzzy geometry of space , 1991, Pattern Recognit. Lett..

[4]  Y. Ku,et al.  Introduction to fuzzy arithmetic—theory and applications : Arnold Kaufmann and Madan M. Gupta. 351 pages, diagrams, figures. Van Nostrand Reinhold Company, New York, 1985. , 1986 .

[5]  J. J. Buckley,et al.  Fuzzy plane geometry II: Circles and polygons , 1997, Fuzzy Sets Syst..

[6]  Mohammadreza Jooyandeh,et al.  Fuzzy Voronoi Diagram , 2008 .

[7]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[8]  Mariette Yvinec,et al.  The Voronoi Diagram of Planar Convex Objects , 2003, ESA.

[9]  Przemyslaw Grzegorzewski,et al.  Metrics and orders in space of fuzzy numbers , 1998, Fuzzy Sets Syst..

[10]  Sunil Arya,et al.  Linear-size approximate voronoi diagrams , 2002, SODA '02.

[11]  Seyed Hossein Razavi Hajiagha,et al.  A Fuzzy Data Envelopment Analysis Approach based on Parametric Programming , 2013, Int. J. Comput. Commun. Control.

[12]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[13]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1996, Discret. Comput. Geom..

[14]  Osamu Takahashi,et al.  Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..

[15]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[16]  Ali Mohades,et al.  Uncertain Voronoi diagram , 2009, Inf. Process. Lett..

[17]  Debjani Chakraborty,et al.  A theoretical development on a fuzzy distance measure for fuzzy numbers , 2006, Math. Comput. Model..