Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

Abstract Photoelectrochemical (PEC) water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, Ga)Se2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

[1]  Hyunchul Kim,et al.  Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer. , 2016, ACS applied materials & interfaces.

[2]  Liejin Guo,et al.  Intergrowth of Cocatalysts with Host Photocatalysts for Improved Solar-to-Hydrogen Conversion. , 2016, ACS applied materials & interfaces.

[3]  Todd G. Deutsch,et al.  Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance , 2016 .

[4]  Lydia Helena Wong,et al.  Targeting Ideal Dual‐Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1‐xSe2 Photocathodes , 2015 .

[5]  Y. Tsutsui,et al.  An effect of Ag(I)-substitution at Cu sites in CuGaS2 on photocatalytic and photoelectrochemical properties for solar hydrogen evolution , 2015 .

[6]  Gunawan,et al.  Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. , 2015, Journal of the American Chemical Society.

[7]  Sam S. Yoon,et al.  Enhanced Photoelectrochemical Solar Water Splitting Using a Platinum-Decorated CIGS/CdS/ZnO Photocathode. , 2015, ACS applied materials & interfaces.

[8]  Jinhua Ye,et al.  Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu2ZnSnS4 photocathode. , 2015, Chemical Communications.

[9]  Xudong Xiao,et al.  Recent progress in photocathodes for hydrogen evolution , 2015 .

[10]  K. Domen,et al.  Chalcopyrite Thin Film Materials for Photoelectrochemical Hydrogen Evolution from Water under Sunlight , 2015 .

[11]  Gunawan,et al.  Investigation of the Electric Structures of Heterointerfaces in Pt- and In₂S₃-Modified CuInS₂ Photocathodes Used for Sunlight-Induced Hydrogen Evolution. , 2015, ACS applied materials & interfaces.

[12]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[13]  C. Kaufmann,et al.  Efficient and Stable TiO2:Pt–Cu(In,Ga)Se2 Composite Photoelectrodes for Visible Light Driven Hydrogen Evolution , 2015 .

[14]  Gunawan,et al.  Photosplitting of Water from Wide-Gap Cu(In,Ga)S2 Thin Films Modified with a CdS Layer and Pt Nanoparticles for a High-Onset-Potential Photocathode , 2015 .

[15]  R. Amal,et al.  Solar hydrogen evolution using a CuGaS2 photocathode improved by incorporating reduced graphene oxide , 2015 .

[16]  Z. Zou,et al.  Selective etching of metastable phase induced an efficient CuIn0.7Ga0.3S2 nano-photocathode for solar water splitting , 2015 .

[17]  A. Kudo,et al.  Utilization of Metal Sulfide Material of (CuGa)(1-x)Zn(2x)S2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems. , 2015, The journal of physical chemistry letters.

[18]  Marika Edoff,et al.  CIGS based devices for solar hydrogen production spanning from PEC-cells to PV-electrolyzers: A comparison of efficiency, stability and device topology , 2015 .

[19]  Jiangtian Li,et al.  Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review , 2015 .

[20]  M. Grätzel,et al.  Solution transformation of Cu₂O into CuInS₂ for solar water splitting. , 2015, Nano letters.

[21]  Gunawan,et al.  Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. , 2014, Angewandte Chemie.

[22]  K. Sivula,et al.  Enhancing the Charge Separation in Nanocrystalline Cu2ZnSnS4 Photocathodes for Photoelectrochemical Application: The Role of Surface Modifications. , 2014, The journal of physical chemistry letters.

[23]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[24]  K. Domen,et al.  Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe2 photocathodes modified with CdS and CuGa3Se5 † †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02346c Click here for additional data file. , 2014, Chemical science.

[25]  Detlef W. Bahnemann,et al.  Photochemical splitting of water for hydrogen production by photocatalysis: A review , 2014 .

[26]  K. Sun,et al.  Enabling silicon for solar-fuel production. , 2014, Chemical reviews.

[27]  Gunawan,et al.  Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting , 2014 .

[28]  T. Ishihara,et al.  Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting. , 2014, The journal of physical chemistry letters.

[29]  Zhiliang Wang,et al.  Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. , 2014, Physical chemistry chemical physics : PCCP.

[30]  R. Eisenberg,et al.  Fuel from water: the photochemical generation of hydrogen from water. , 2014, Accounts of chemical research.

[31]  Marika Edoff,et al.  Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again , 2014 .

[32]  Xiaoqiang An,et al.  Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. , 2014, Journal of the American Chemical Society.

[33]  Cuncai Lv,et al.  Tungsten sulfide enhancing solar-driven hydrogen production from silicon nanowires. , 2014, ACS applied materials & interfaces.

[34]  A. Walsh,et al.  Design of I2–II–IV–VI4 Semiconductors through Element Substitution: The Thermodynamic Stability Limit and Chemical Trend , 2014 .

[35]  Shaohua Shen,et al.  Synthesis and Photoelectrochemical Properties of (Cu2Sn)xZn3(1–x)S3 Nanocrystal Films , 2014 .

[36]  Peng Zhang,et al.  Cu2ZnSnS4 thin films: spin coating synthesis and photoelectrochemistry , 2014 .

[37]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[38]  Nageh K. Allam,et al.  Recent advances in the use of metal oxide-based photocathodes for solar fuel production , 2014 .

[39]  Z. Zou,et al.  Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu2ZnSnS4 photocathode , 2014 .

[40]  K. Domen,et al.  Hydrogen evolution from water using Ag(x)Cu(1-x)GaSe2 photocathodes under visible light. , 2014, Physical chemistry chemical physics : PCCP.

[41]  K. Domen,et al.  Photoelectrochemical Hydrogen Evolution from Water Using Copper Gallium Selenide Electrodes Prepared by a Particle Transfer Method , 2014 .

[42]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[43]  Shaohua Shen,et al.  Catalysing artificial photosynthesis , 2013, Nature Photonics.

[44]  Marika Edoff,et al.  CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation , 2013 .

[45]  Z. Zou,et al.  Photocurrent improvement in nanocrystalline Cu2ZnSnS4 photocathodes by introducing porous structures , 2013 .

[46]  Yang Yang,et al.  CZTS nanocrystals: a promising approach for next generation thin film photovoltaics , 2013 .

[47]  K. Sivula,et al.  Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. , 2013, ACS applied materials & interfaces.

[48]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[49]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[50]  S. Ikeda,et al.  Fabrication of CuInS2 and Cu(In,Ga)S2 thin films by a facile spray pyrolysis and their photovoltaic and photoelectrochemical properties , 2013 .

[51]  Z. Zou,et al.  Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method , 2013 .

[52]  T. Schedel-Niedrig,et al.  Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes , 2013 .

[53]  Yang Yang,et al.  Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films. , 2013, Journal of the American Chemical Society.

[54]  Jun Kubota,et al.  Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. , 2013, Journal of the American Chemical Society.

[55]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[56]  Jan Augustynski,et al.  Highly efficient water splitting by a dual-absorber tandem cell , 2012, Nature Photonics.

[57]  S. Dahl,et al.  Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. , 2012, Angewandte Chemie.

[58]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[59]  N. Gaillard,et al.  Hybrid Photovoltaic/Photoelectrochemical Device Design Using I-III-VI2 Copper Chalcopyrite-Based Photocathodes , 2012 .

[60]  Shaohua Shen,et al.  Nanostructure designs for effective solar-to-hydrogen conversion , 2012 .

[61]  Aron Walsh,et al.  Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 , 2012 .

[62]  K. Domen,et al.  Enhanced photoelectrochemical properties of CuGa3Se5 thin films for water splitting by the hydrogen mediated co-evaporation method , 2012 .

[63]  Shaohua Shen,et al.  A perspective on solar-driven water splitting with all-oxide hetero-nanostructures , 2011 .

[64]  A. Jäger-Waldau,et al.  Progress in chalcopyrite compound semiconductor research for photovoltaic applications and transfer of results into actual solar cell production , 2011 .

[65]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[66]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[67]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[68]  Sun Min Lee,et al.  Photoreduction of water by using modified CuInS2 electrodes. , 2010, ChemSusChem.

[69]  John A. Turner,et al.  Characterization of Hematite Thin Films for Photoelectrochemical Water Splitting in a Dual Photoelectrode Device , 2010 .

[70]  K. Domen,et al.  H2 Evolution from Water on Modified Cu2ZnSnS4 Photoelectrode under Solar Light , 2010 .

[71]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[72]  Makoto Konagai,et al.  Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film , 2010 .

[73]  A. Walsh,et al.  Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4 , 2010 .

[74]  Helmut Tributsch,et al.  TiO2-Protected Photoelectrochemical Tandem Cu(In,Ga)Se2 Thin Film Membrane for Light-Induced Water Splitting and Hydrogen Evolution , 2009 .

[75]  Yat Li,et al.  Hydrogen generation from photoelectrochemical water splitting based on nanomaterials , 2009 .

[76]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[77]  Eric L. Miller,et al.  Photoelectrolysis of water using thin copper gallium diselenide electrodes , 2008 .

[78]  X. Gong,et al.  Band-structure anomalies of the chalcopyrite semiconductors CuGa X 2 versus AgGa X 2 ( X = S and Se) and their alloys , 2007 .

[79]  W. Ingler,et al.  A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting , 2006 .

[80]  Shengbai Zhang,et al.  Defect properties of CuInSe2 and CuGaSe2 , 2005 .

[81]  P. J. Sebastian,et al.  Photoelectrochemical characterization of CIGS thin films for hydrogen production , 2005 .

[82]  R. Rocheleau,et al.  Optimization of Hybrid Photoelectrodes for Solar Water-Splitting , 2005 .

[83]  P. Sebastián,et al.  Studies on the electrochemical stability of CIGS in H2SO4 , 2004 .

[84]  M. Lux‐Steiner,et al.  Determination of the band gap depth profile of the penternary Cu(In(1−X)GaX)(SYSe(1−Y))2 chalcopyrite from its composition gradient , 2004 .

[85]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[86]  W. Lambrecht,et al.  Electronic band structure of ordered vacancy defect chalcopyrite compounds with formula II-III 2 -VI 4 , 2004 .

[87]  K. Riahi,et al.  The hydrogen economy in the 21st century: a sustainable development scenario , 2003 .

[88]  C. Rincón,et al.  Defect physics of the CuInSe2 chalcopyrite semiconductor , 1999 .

[89]  P. Sebastián,et al.  Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition , 1999 .

[90]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[91]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[92]  Alex Zunger,et al.  Theory of the band-gap anomaly in AB C 2 chalcopyrite semiconductors , 1984 .

[93]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[94]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[95]  A Winchell,et al.  To the Editor of "Science". , 1880, Science.

[96]  K. Domen,et al.  Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. , 2016, ChemSusChem.

[97]  K. Domen,et al.  drogen production from neutral electrolytes using surface-modi , 2015 .

[98]  Xi‐Wen Du,et al.  Single crystalline Cu2ZnSnS4 nanosheet arrays for efficient photochemical hydrogen generation , 2015 .

[99]  S. Joshi,et al.  Photoelectrochemistry of Cu(In,Ga)Se 2 thin-films fabricated by sequential pulsed electrodeposition , 2015 .

[100]  S. Menezes,et al.  Potential of Electrodeposited Copper Indium Selenide Thin-Films for Various Solar Energy Conversion Devices , 2014 .

[101]  N. Gaillard,et al.  Development of Chalcogenide Thin Film Materials for Photoelectrochemical Hydrogen Production , 2013 .

[102]  T. Edvinsson,et al.  A Monolithic Device for Solar Water Splitting Based on Series Interconnected CIGS-Cells Reaching Over 10 % Solar-to-Hydrogen Efficiency , 2013 .

[103]  N. Gaillard,et al.  I-III-VI 2 (Copper Chalcopyrite-based) Thin Films for Photoelectrochemical Water-Splitting Tandem-Hybrid Photocathode , 2011 .

[104]  K. Domen,et al.  Investigation of Cu-Deficient Copper Gallium Selenide Thin Film as a Photocathode for Photoelectrochemical Water Splitting , 2011 .

[105]  R. Rocheleau,et al.  Advances in copper-chalcopyrite thin films for solar energy conversion , 2010 .

[106]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[107]  R. Rocheleau,et al.  Copper Chalcopyrite Film Photocathodes for Direct Solar-Powered Water Splitting , 2006 .

[108]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[109]  A. Fujishima,et al.  Photoelectrochemical hydrogen production , 1979 .