Detecting hierarchical stellar systems with LISA

A significant fraction of stars are members of gravitationally bound hierarchies containing three or more components. Almost all low-mass stars in binaries with periods shorter than three days are part of a hierarchical system. We therefore anticipate that a large fraction of compact galactic binaries detected by the Laser Interferometer Space Antenna will be members of hierarchical triple or quadruple system. The acceleration imparted by the hierarchical companions can be detected in the gravitational wave signal for outer periods as large as 100 years. For systems with periods that are shorter than, or comparable to, the mission lifetime, it will be possible to measure the period and eccentricity of the outer orbit. Laser Interferometer Space Antenna observations of hierarchical stellar systems will provide insight into stellar evolution, including the role that Lidov-Kozai oscillations play in driving systems toward merger.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  M. Hollands,et al.  The Gaia 20 pc white dwarf sample , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  T. Thompson,et al.  Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae , 2017, 1709.08682.

[5]  H. Perets,et al.  Rate of WD-WD head-on collisions in isolated triples is too low to explain standard type Ia supernovae , 2017, 1709.00422.

[6]  Bence Kocsis,et al.  Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect , 2017, 1706.09896.

[7]  N. Cornish,et al.  Impact of galactic foreground characterization on a global analysis for the LISA gravitational wave observatory , 2017, 1705.09421.

[8]  C. Will Orbital flips in hierarchical triple systems: Relativistic effects and third-body effects to hexadecapole order , 2017, 1705.03962.

[9]  N. Cornish,et al.  Galactic binary science with the new LISA design , 2017, 1703.09858.

[10]  M. Hollands,et al.  The binarity of the local white dwarf population , 2017, 1703.06893.

[11]  F. Antonini,et al.  Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution , 2017, 1703.06614.

[12]  Z. Haiman,et al.  Probing stellar binary black hole formation in galactic nuclei via the imprint of their center of mass acceleration on their gravitational wave signal , 2017, 1702.06529.

[13]  R. Chini,et al.  Multiplicity among Solar-type Stars , 2017 .

[14]  R. Sturani,et al.  Effect of matter structure on the gravitational waveform , 2016, 1609.08093.

[15]  B. Katz,et al.  The way to a double degenerate: ∼15-20 per cent of 1 M ☉ ≤ M ≤ 8 M ☉ stars have an M > 1 M ☉ companion , 2016, 1609.03580.

[16]  K. Chatziioannou,et al.  Analytic Gravitational Waveforms for Generic Precessing Binary Inspirals. , 2016, Physical review letters.

[17]  S. P. Portegies Zwart,et al.  The evolution of hierarchical triple star-systems , 2016, 1612.06172.

[18]  S. Tremaine,et al.  Lidov–Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems , 2016, 1608.07642.

[19]  D. Richardson,et al.  THE ROLE OF THE KOZAI–LIDOV MECHANISM IN BLACK HOLE BINARY MERGERS IN GALACTIC CENTERS , 2016, 1604.04948.

[20]  A. Loeb,et al.  DETECTING TRIPLE SYSTEMS WITH GRAVITATIONAL WAVE OBSERVATIONS , 2016, 1604.02148.

[21]  A. Ghez,et al.  Merging Binaries in the Galactic Center: The eccentric Kozai-Lidov mechanism with stellar evolution , 2016, 1603.02709.

[22]  S. Naoz The Eccentric Kozai-Lidov Effect and Its Applications , 2016, 1601.07175.

[23]  T. Fragos,et al.  FORMATION OF BLACK HOLE LOW-MASS X-RAY BINARIES IN HIERARCHICAL TRIPLE SYSTEMS , 2015, 1510.02093.

[24]  N. Soker,et al.  A formation scenario for the triple pulsar PSR J0337+1715: breaking a binary system inside a common envelope , 2015, 1501.06787.

[25]  E. Chiang,et al.  A class of warm Jupiters with mutually inclined, apsidally misaligned close friends , 2014, Science.

[26]  O. Absil,et al.  SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION , 2014, 1409.6304.

[27]  H. Perets,et al.  SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS , 2014, 1405.6029.

[28]  D. Fabrycky,et al.  MERGERS AND OBLIQUITIES IN STELLAR TRIPLES , 2014, 1405.5223.

[29]  C. Petrovich STEADY-STATE PLANET MIGRATION BY THE KOZAI–LIDOV MECHANISM IN STELLAR BINARIES , 2014, 1405.0280.

[30]  Andrei Tokovinin,et al.  FROM BINARIES TO MULTIPLES. II. HIERARCHICAL MULTIPLICITY OF F AND G DWARFS , 2014, 1401.6827.

[31]  A. Tokovinin FROM BINARIES TO MULTIPLES. I. DATA ON F AND G DWARFS WITHIN 67 pc OF THE SUN , 2014, 1401.6825.

[32]  T. Tauris,et al.  FORMATION OF THE GALACTIC MILLISECOND PULSAR TRIPLE SYSTEM PSR J0337+1715—A NEUTRON STAR WITH TWO ORBITING WHITE DWARFS , 2014, 1401.0941.

[33]  R. Lynch,et al.  A millisecond pulsar in a stellar triple system , 2014, Nature.

[34]  N. Seto Highly eccentric Kozai mechanism and gravitational-wave observation for neutron-star binaries. , 2013, Physical review letters.

[35]  G. Nelemans,et al.  Population synthesis of triple systems in the context of mergers of carbon–oxygen white dwarfs , 2013, 1301.1469.

[36]  W. Farr,et al.  ON THE FORMATION OF HOT JUPITERS IN STELLAR BINARIES , 2012, 1206.3529.

[37]  H. Perets,et al.  THE TRIPLE EVOLUTION DYNAMICAL INSTABILITY: STELLAR COLLISIONS IN THE FIELD AND THE FORMATION OF EXOTIC BINARIES , 2012, 1203.2914.

[38]  H. Perets,et al.  SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA , 2012, 1203.2938.

[39]  J. Laskar,et al.  Tidal evolution of hierarchical and inclined systems , 2011, 1107.0736.

[40]  T. Thompson ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR “PROMPT” TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA , 2010, 1011.4322.

[41]  Will M. Farr,et al.  Hot Jupiters from secular planet–planet interactions , 2010, Nature.

[42]  M. Miller,et al.  Effect of massive perturbers on extreme mass-ratio inspiral waveforms , 2010, 1010.1721.

[43]  J. Key,et al.  Characterizing spinning black hole binaries in eccentric orbits with LISA , 2010, 1006.3759.

[44]  S. Chaichenets,et al.  FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS , 2010, 1001.1767.

[45]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[46]  Daniel C. Fabrycky,et al.  ON THE TRIPLE ORIGIN OF BLUE STRAGGLERS , 2009, 0901.4328.

[47]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[48]  T. Littenberg,et al.  Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.

[49]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[50]  T. Pribulla,et al.  Contact Binaries with Additional Components. I. The Extant Data , 2006, astro-ph/0601610.

[51]  S. Udry,et al.  Tertiary Companions to Close Spectroscopic Binaries , 2006, astro-ph/0601518.

[52]  M. Miller,et al.  Three-Body Dynamics with Gravitational Wave Emission , 2005, astro-ph/0509885.

[53]  N. Cornish,et al.  LISA data analysis using Markov chain Monte Carlo methods , 2005 .

[54]  G. Nelemans,et al.  Mass transfer between double white dwarfs , 2003, astro-ph/0312577.

[55]  N. Evans,et al.  High-Mass Triple Systems: The Classical Cepheid Y Carinae , 2003, astro-ph/0504169.

[56]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[57]  N. Seto Long Term Operation of LISA and Galactic Close White Dwarf Binaries , 2002, astro-ph/0202364.

[58]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[59]  Colin Tudge,et al.  Planet , 1999 .

[60]  E. Ford,et al.  Secular Evolution of Hierarchical Triple Star Systems , 1999, astro-ph/9905348.

[61]  Seppo Mikkola,et al.  Tidal friction in triple stars , 1998 .

[62]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[63]  P. Eggleton,et al.  Triple star evolution and the formation of short-period, low mass X-ray binaries , 1986 .

[64]  R. Harrington DYNAMICAL EVOLUTION OF TRIPLE STARS. , 1968 .

[65]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[66]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .