A generalization of bounds for cyclic codes, including the HT and BS bounds

We present a lower bound for the distance of a cyclic code, which is computed in polynomial time from the defining set of the code. Our bound beats other similar bounds, including the Roos bound, in the majority of computed cases.

[1]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[2]  Dwijendra K. Ray-Chaudhuri,et al.  Further Results on Error Correcting Binary Group Codes , 1960, Inf. Control..

[3]  Sergey Bezzateev,et al.  Decoding Cyclic Codes up to a New Bound on the Minimum Distance , 2011, IEEE Transactions on Information Theory.

[4]  Richard E. Blahut Transform Techniques for Error Control Codes , 1979, IBM J. Res. Dev..

[5]  Carlos R. P. Hartmann,et al.  Generalizations of the BCH Bound , 1972, Inf. Control..

[6]  Massimiliano Sala,et al.  A New Bound for the Minimum Distance of a Cyclic Code From Its Defining Set , 2006, IEEE Transactions on Information Theory.

[7]  Kees Roos A Generalization of the BCH Bound for Cyclic Codes, Including the Hartmann-Tzeng Bound , 1982, J. Comb. Theory, Ser. A.

[8]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[9]  L. Carlitz,et al.  Bounds for exponential sums , 1957 .

[10]  T. Schaub A linear complexity approach to cyclic codes , 1988 .

[11]  Daniel Augot,et al.  Bounds on the minimum distance of the duals of BCH codes , 1996, IEEE Trans. Inf. Theory.

[12]  Kees Roos,et al.  A new lower bound for the minimum distance of a cyclic code , 1983, IEEE Trans. Inf. Theory.

[13]  M. Sala,et al.  A lower bound on the distance of cyclic codes , 2003 .

[14]  Richard M. Wilson,et al.  On the minimum distance of cyclic codes , 1986, IEEE Trans. Inf. Theory.