Parametric and Quantitative Extensions of Modal Transition Systems

Modal transition systems provide a behavioral and compositional specification formalism for reactive systems. We survey two extensions of modal transition systems: parametric modal transition systems for specifications with parameters, and weighted modal transition systems for quantitative specifications.

[1]  Jerzy Tyszkiewicz,et al.  Mathematical Foundations of Computer Science 2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008, Proceedings , 2008, MFCS.

[2]  Martin Leucker,et al.  Modeling and Model Checking Software Product Lines , 2008, FMOODS.

[3]  Kim G. Larsen,et al.  A Context Dependent Equivalence Between Processes , 1985, Theor. Comput. Sci..

[4]  Kim G. Larsen,et al.  Graphical Versus Logical Specifications , 1990, Theor. Comput. Sci..

[5]  Kim G. Larsen,et al.  Distances for Weighted Transition Systems: Games and Properties , 2011, QAPL.

[6]  Brian Campbell,et al.  Amortised Memory Analysis Using the Depth of Data Structures , 2009, ESOP.

[7]  Piotr Sankowski,et al.  Mathematical Foundations of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings , 2011, MFCS.

[8]  Thomas A. Henzinger,et al.  Model checking discounted temporal properties , 2005, Theor. Comput. Sci..

[9]  Harald Fecher,et al.  Comparing disjunctive modal transition systems with an one-selecting variant , 2008, J. Log. Algebraic Methods Program..

[10]  R. Milner,et al.  Bigraphical Reactive Systems , 2001, CONCUR.

[11]  Kim G. Larsen,et al.  Extending modal transition systems with structured labels , 2012, Mathematical Structures in Computer Science.

[12]  Pavol Cerný,et al.  Simulation distances , 2010, Theor. Comput. Sci..

[13]  Luca de Alfaro,et al.  Linear and Branching System Metrics , 2009, IEEE Transactions on Software Engineering.

[14]  Jan Kretínský,et al.  Process Algebra for Modal Transition Systemses , 2010, MEMICS.

[15]  Kim G. Larsen,et al.  A modal process logic , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[16]  Joseph Sifakis,et al.  A Logic for the Description of Non-deterministic Programs and Their Properties , 1986, Inf. Control..

[17]  Sören Holmström,et al.  A refinement calculus for specifications in Hennessy-Milner logic with recursion , 1989, Formal Aspects of Computing.

[18]  Joseph Sifakis,et al.  Automatic Verification Methods for Finite State Systems , 1989, Lecture Notes in Computer Science.

[19]  Mohamed Nassim Seghir,et al.  A Lightweight Approach for Loop Summarization , 2011, ATVA.

[20]  Kim G. Larsen,et al.  Parametric Modal Transition Systems , 2011, ATVA.

[21]  Juhani Karhumäki,et al.  Computer Science - Theory and Applications , 2014, Lecture Notes in Computer Science.

[22]  Flemming Nielson,et al.  Modal Abstractions of Concurrent Behaviour , 2008, SAS.

[23]  Radha Jagadeesan,et al.  Abstraction-Based Model Checking Using Modal Transition Systems , 2001, CONCUR.

[24]  Axel Legay,et al.  The quantitative linear-time-branching-time spectrum , 2011, Theor. Comput. Sci..

[25]  Axel Legay,et al.  Specification Theories for Probabilistic and Real-Time Systems , 2014, FPS@ETAPS.

[26]  Kim G. Larsen,et al.  Quantitative Refinement for Weighted Modal Transition Systems , 2011, MFCS.

[27]  Kim G. Larsen,et al.  On Modal Refinement and Consistency , 2007, CONCUR.

[28]  Kim G. Larsen,et al.  Equation solving using modal transition systems , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[29]  Marsha Chechik,et al.  Merging partial behavioural models , 2004, SIGSOFT '04/FSE-12.

[30]  Radha Jagadeesan,et al.  Modal Transition Systems: A Foundation for Three-Valued Program Analysis , 2001, ESOP.

[31]  Kim G. Larsen,et al.  Modal Specifications , 1989, Automatic Verification Methods for Finite State Systems.

[32]  Alberto Policriti,et al.  A Complete Axiomatic System for a Process-Based Spatial Logic , 2008, MFCS.

[33]  Axel Legay,et al.  The quantitative linear-time-branching-time spectrum , 2014, Theor. Comput. Sci..

[34]  Axel Legay,et al.  General Quantitative Specification Theories with Modalities , 2012, CSR.

[35]  Roberto Passerone,et al.  Why Are Modalities Good for Interface Theories? , 2009, 2009 Ninth International Conference on Application of Concurrency to System Design.

[36]  Kim G. Larsen,et al.  Modal transition systems with weight intervals , 2012, J. Log. Algebraic Methods Program..

[37]  Axel Legay,et al.  From Programs to Systems. The Systems perspective in Computing , 2014, Lecture Notes in Computer Science.