Nature-inspired metaheuristics for multiobjective activity crashing

Many project tasks and manufacturing processes consist of interdependent time-related activities that can be represented as networks. Deciding which of these sub-processes should receive extra resources to speed up the whole network (i.e., where activity crashing should be applied) usually involves the pursuit of multiple objectives amid a lack of a priori preference information. A common decision support approach lies in first determining efficient combinations of activity crashing measures and then pursuing an interactive exploration of this space. As it is impossible to exactly solve the underlying multiobjective combinatorial optimization problem within a reasonable computation time for real-world problems, we have developed proper solution procedures based on three major (nature-inspired) metaheuristics. This paper describes these implementations, discusses their strengths, and provides results from computational experiments.

[1]  D. Panagiotakopoulos A CPM Time-Cost Computational Algorithm for Arbitrary Activity Cost Functions , 1977 .

[2]  Prabuddha De,et al.  Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks , 1997, Oper. Res..

[3]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[4]  F. Varela,et al.  Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life , 1992 .

[5]  Christine Strauss,et al.  A Stochastic Branch-and-Bound Approach to Activity Crashing in Project Management , 2000, INFORMS J. Comput..

[6]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[7]  Patrick Siarry,et al.  Three new metrics to measure the convergence of metaheuristics towards the Pareto frontier and the aesthetic of a set of solutions in biobjective optimization , 2005, Comput. Oper. Res..

[8]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[9]  Walter J. Gutjahr,et al.  ACO algorithms with guaranteed convergence to the optimal solution , 2002, Inf. Process. Lett..

[10]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .

[11]  El-Ghazali Talbi Metaheuristics for Multiobjective Optimization , 2009 .

[12]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[13]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[14]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[15]  Luca Maria Gambardella,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[16]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[17]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[18]  Piero Mussio,et al.  Toward a Practice of Autonomous Systems , 1994 .

[19]  Elena Marchiori,et al.  Applications of Evolutionary Computing: Evoworkshops 2003 , 2003 .

[20]  Minghe Sun,et al.  New Multiobjective Metaheuristic Solution Procedures for Capital Investment Planning , 2005, J. Heuristics.

[21]  Karl F. Doerner,et al.  Enriched workflow modelling and Stochastic Branch-and-Bound , 2006, Eur. J. Oper. Res..

[22]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[23]  Gary Witus Decision Support for Planning and Resource Allocation in Hierarchical Organizations , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[25]  L Sunde,et al.  Net-present-value cost/time tradeoff , 1995 .

[26]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[27]  Andrzej Jaszkiewicz,et al.  Evaluation of Multiple Objective Metaheuristics , 2004, Metaheuristics for Multiobjective Optimisation.

[28]  Richard F. Hartl,et al.  Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection , 2006, Eur. J. Oper. Res..

[29]  Christine Strauss,et al.  Crashing of stochastic processes by sampling and optimisation , 2000, Bus. Process. Manag. J..

[30]  Richard F. Hartl,et al.  SavingsAnts for the Vehicle Routing Problem , 2002, EvoWorkshops.

[31]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[32]  E. Ritchie,et al.  Project compression: A method for speeding up resource constrained projects which preserve the activity schedule , 1990 .

[33]  Luís Vladares Tavares,et al.  A review of the contribution of Operational Research to Project Management , 2002, Eur. J. Oper. Res..

[34]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[35]  Richard F. Hartl,et al.  Cooperative Ant Colonies for Optimizing Resource Allocation in Transportation , 2001, EvoWorkshops.

[36]  E. W. Davis,et al.  Project Management With Cpm, Pert and Precedence Diagramming , 1983 .

[37]  John F. Muth,et al.  A Dynamic Programming Algorithm for Decision CPM Networks , 1979, Oper. Res..

[38]  Richard F. Hartl,et al.  An improved Ant System algorithm for theVehicle Routing Problem , 1999, Ann. Oper. Res..

[39]  Philippe Vincke,et al.  Multicriteria Decision-Aid , 1992 .

[40]  Paolo Serafini,et al.  Simulated Annealing for Multi Objective Optimization Problems , 1994 .

[41]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .