Tau Filament Formation in Transgenic Mice Expressing P301L Tau*

Mutations in the microtubule-associated protein tau, including P301L, are genetically coupled to hereditary frontotemporal dementia with parkinsonism linked to chromosome 17. To determine whether P301L is associated with fibril formation in mice, we expressed the longest human tau isoform, human tau40, with this mutation in transgenic mice by using the neuron-specific mouse Thy1.2 promoter. We obtained mice with high expression of human P301L tau in cortical and hippocampal neurons. Accumulated tau was hyperphosphorylated and translocated from axonal to somatodendritic compartments and was accompanied by astrocytosis and neuronal apoptosis indicated by terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end-labeling staining. Moreover, P301L tau formed abnormal filaments. Electron microscopy of sarcosyl-insoluble protein extracts established that the filaments had a straight or twisted structure of variable length and were ∼15 nm wide. Immunoelcecton microscopy showed that the tau filaments were phosphorylated at the TG3, AT100, AT8, and AD199 epitopes in vivo. In cortex, brain stem, and spinal cord, neurofibrillary tangles were also identified by thioflavin-S fluorescent microscopy and Gallyas silver stains. Together, our results show that expression of the P301L mutation in mice causes neuronal lesions that are similar to those seen in human tauopathies.

[1]  P. Wong,et al.  The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation , 1993, The Journal of cell biology.

[2]  J. Brion,et al.  Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer's disease. , 1999, The American journal of pathology.

[3]  J. Ávila,et al.  Polymerization of τ into Filaments in the Presence of Heparin: The Minimal Sequence Required for τ ‐ τ Interaction , 1996 .

[4]  Wen-Lang Lin,et al.  Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein , 2000, Nature Genetics.

[5]  E. Mandelkow,et al.  Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. , 1999, Journal of cell science.

[6]  R. Crowther,et al.  Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans , 1996, Nature.

[7]  P. Cohen,et al.  Molecular dissection of the paired helical filament , 1995, Neurobiology of Aging.

[8]  A. Grover,et al.  5′ Splice Site Mutations in tau Associated with the Inherited Dementia FTDP-17 Affect a Stem-Loop Structure That Regulates Alternative Splicing of Exon 10* , 1999, The Journal of Biological Chemistry.

[9]  A. Hirano,et al.  A COMPARATIVE STUDY OF MODIFIED BIELSCHOWSKY, BODIAN AND THIOFLAVIN S STAINS ON ALZHEIMER'S NEUROFIBRILLARY TANGLES , 1986, Neuropathology and applied neurobiology.

[10]  M. Goedert,et al.  Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. , 1995, The EMBO journal.

[11]  M. Goedert,et al.  Pick’s disease: hyperphosphorylated tau protein segregates to the somatoaxonal compartment , 1996, Acta Neuropathologica.

[12]  A. Klug,et al.  Structural characterization of the core of the paired helical filament of Alzheimer disease. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[13]  B. Hemmings,et al.  Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Delacourte,et al.  The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease , 1999, Neurology.

[15]  Khadija Iqbal,et al.  Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. , 1998, Journal of neural transmission. Supplementum.

[16]  N. Cairns,et al.  Tau proteins of alzheimer paired helical filaments: Abnormal phosphorylation of all six brain isoforms , 1992, Neuron.

[17]  W. Kamphorst,et al.  Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau. , 1998, The American journal of pathology.

[18]  A. Delacourte,et al.  Neurofibrillary Degeneration in Progressive Supranuclear Palsy and Corticobasal Degeneration , 1999, Journal of neurochemistry.

[19]  M. Goedert,et al.  Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. , 1990, The EMBO journal.

[20]  R. Brandt,et al.  Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein. , 1994, Cell motility and the cytoskeleton.

[21]  H. Geerts,et al.  Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. , 1999, The American journal of pathology.

[22]  Bin Zhang,et al.  Age-Dependent Emergence and Progression of a Tauopathy in Transgenic Mice Overexpressing the Shortest Human Tau Isoform , 1999, Neuron.

[23]  R. A. Crowther,et al.  Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein , 2000, Acta Neuropathologica.

[24]  P. Davies,et al.  Characterization of Pathology in Transgenic Mice Over-Expressing Human Genomic and cDNA Tau Transgenes , 2000, Neurobiology of Disease.

[25]  M. Goedert,et al.  The tauopathies: toward an experimental animal model. , 1999, The American journal of pathology.