Higher-dimensional categories with finite derivation type

We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalizing the one introduced by Squier for word rewriting systems. We characterize this property by using the notion of critical branching. In particular, we define sufficient conditions for an n-category to have finite derivation type. Through examples, we present several techniques based on derivations of 2-categories to study convergent presentations by 3-polygraphs.

[1]  FRANÇOIS MÉTAYER,et al.  Resolutions by Polygraphs , 2003 .

[2]  Guillaume Bonfante,et al.  Polygraphic programs and polynomial-time functions , 2007, cs/0701032.

[3]  Yves Guiraud Présentations d'opérades et systèmes de réécriture , 2004 .

[4]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[5]  Aaron D. Lauda,et al.  Higher-dimensional categories: an illustrated guide book , 2004 .

[6]  S. Lane Categories for the Working Mathematician , 1971 .

[7]  Yves Guiraud,et al.  Termination orders for 3-dimensional rewriting , 2006, ArXiv.

[8]  Yves Guiraud The three dimensions of proofs , 2006, Ann. Pure Appl. Log..

[9]  Fahd Ali Al-Agl,et al.  Theory and Applications of Categories , 1993 .

[10]  H. Baues Combinatorial homotopy and 4-dimensional complexes , 1990 .

[11]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[12]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[14]  Terese Term rewriting systems , 2003, Cambridge tracts in theoretical computer science.

[15]  Ross Street,et al.  Limits indexed by category-valued 2-functors , 1976 .

[16]  Yves Guiraud,et al.  Two polygraphic presentations of Petri nets , 2006, Theor. Comput. Sci..

[17]  Si Sj,et al.  Higher Categories , Strings , Cubes and Simplex Equations , 2004 .

[18]  Günther Wirsching,et al.  Cohomology of small categories , 1985 .

[19]  G. Budworth The Knot Book , 1983 .

[20]  Ross Street,et al.  The algebra of oriented simplexes , 1987 .

[21]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[22]  Guillaume Bonfante,et al.  Intensional Properties of Polygraphs , 2008, Electron. Notes Theor. Comput. Sci..

[23]  Jan Willem Klop,et al.  Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.

[24]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[25]  Albert Burroni,et al.  Higher-Dimensional Word Problems with Applications to Equational Logic , 1993, Theor. Comput. Sci..

[26]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[27]  Friedrich Otto,et al.  String-Rewriting Systems , 1993, Text and Monographs in Computer Science.

[28]  Friedrich Otto,et al.  A Finiteness Condition for Rewriting Systems , 1994, Theor. Comput. Sci..