Fully gapped pairing state in spin-triplet superconductor UTe$_2$

Spin-triplet superconductors provide an ideal platform for realizing topological superconductivity with emergent Majorana quasiparticles. The promising candidate is the recently discovered superconductor UTe$ _2$, but the symmetry of the superconducting order parameter remains highly controversial. Here we determine the superconducting gap structure by the thermal conductivity of ultra-clean UTe$ _2$ single crystals. We find that the $a$ axis thermal conductivity divided by temperature $\kappa/T$ in zero-temperature limit is vanishingly small for both magnetic fields $\mathbf{H}||a$ and $\mathbf{H}||c$ axes up to $H/H_{c2}\sim 0.2$, demonstrating the absence of any types of nodes around $a$ axis contrary to the previous belief. The present results, combined with the reduction of the NMR Knight shift in the superconducting state, indicate that the superconducting order parameter belongs to the isotropic $A_u$ representation with a fully gapped pairing state, analogous to the B phase of superfluid $ ^3$He. These findings reveal that UTe$ _2$ is likely to be a long-sought three-dimensional (3D) strong topological superconductor characterized by a 3D winding number, hosting helical Majorana surface states on any crystal plane.

[1]  M. O. Ajeesh,et al.  The fate of time-reversal symmetry breaking in UTe2 , 2023, 2305.00589.

[2]  F. Ronning,et al.  Microscopic Imaging Homogeneous and Single Phase Superfluid Density in UTe_{2}. , 2022, Physical review letters.

[3]  J. M. Wilkinson,et al.  Ubiquitous spin freezing in the superconducting state of UTe2 , 2022, Communications Physics.

[4]  H. Harima,et al.  First Observation of the de Haas–van Alphen Effect and Fermi Surfaces in the Unconventional Superconductor UTe2 , 2022, Journal of the Physical Society of Japan.

[5]  B. Scott,et al.  Single thermodynamic transition at 2 K in superconducting UTe2 single crystals , 2022, Communications Materials.

[6]  E. Bauer,et al.  Thermodynamic and electrical transport properties of UTe$_2$ under uniaxial stress , 2022, 2205.04588.

[7]  K. Ishida,et al.  Superconducting Order Parameter in UTe2 Determined by Knight Shift Measurement , 2022, Journal of the Physical Society of Japan.

[8]  V.P.Mineev Low temperature specific heat and thermal conductivity in superconducting UTe2 , 2022, 2201.09800.

[9]  K. Ishida,et al.  Slow Electronic Dynamics in the Paramagnetic State of UTe2 , 2022, Journal of the Physical Society of Japan.

[10]  Y. Tokunaga,et al.  Unconventional superconductivity in UTe2 , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  N. Butch,et al.  Multicomponent superconducting order parameter in UTe2 , 2021, Science.

[12]  T. Shibauchi,et al.  Chiral superconductivity in UTe2 probed by anisotropic low-energy excitations , 2021, Nature communications.

[13]  E. Bauer,et al.  Spatially inhomogeneous superconductivity in UTe2 , 2021, Physical Review B.

[14]  K. Ishida,et al.  Anisotropic response of spin susceptibility in the superconducting state of UTe2 probed with Te125−NMR measurement , 2021, 2103.02876.

[15]  M. Fuhrer,et al.  $c$-axis transport in UTe$_{2}$: Evidence of Three Dimensional Conductivity Component , 2021, 2101.03102.

[16]  D. Braithwaite,et al.  Comparison of two superconducting phases induced by a magnetic field in UTe2 , 2020, 2007.06009.

[17]  A. Huxley,et al.  Composition dependence of the superconducting properties of UTe2 , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  N. Butch Unconventional superconductivity in UTe 2 , 2020 .

[19]  M. Sigrist,et al.  Chiral superconductivity in heavy-fermion metal UTe2 , 2020, Nature.

[20]  T. Sakakibara,et al.  Orientation of point nodes and nonunitary triplet pairing tuned by the easy-axis magnetization in UTe2 , 2020, 2002.06385.

[21]  G. Kotliar,et al.  Low Energy Band Structure and Symmetries of UTe_{2} from Angle-Resolved Photoemission Spectroscopy. , 2019, Physical review letters.

[22]  I. Liu,et al.  Anomalous normal fluid response in a chiral superconductor UTe2 , 2019, Nature Communications.

[23]  K. Ishida,et al.  Superconducting Properties of Heavy Fermion UTe2 Revealed by 125Te-nuclear Magnetic Resonance , 2019, Journal of the Physical Society of Japan.

[24]  D. Aoki,et al.  Electronic Structure of UTe2 Studied by Photoelectron Spectroscopy , 2019, Journal of the Physical Society of Japan.

[25]  I. Liu,et al.  Nearly ferromagnetic spin-triplet superconductivity , 2018, Science.

[26]  I. Liu,et al.  Point-node gap structure of the spin-triplet superconductor UTe2. , 2019, Physical review. B.

[27]  G. Seyfarth,et al.  Fermi-Surface Instability in the Heavy-Fermion Superconductor UTe_{2}. , 2019, Physical review letters.

[28]  G. Seyfarth,et al.  Field-Reentrant Superconductivity Close to a Metamagnetic Transition in the Heavy-Fermion Superconductor UTe2 , 2019, Journal of the Physical Society of Japan.

[29]  D. Graf,et al.  Extreme magnetic field-boosted superconductivity , 2019, Nature Physics.

[30]  H. Harima,et al.  Unconventional Superconductivity in Heavy Fermion UTe2 , 2019, Journal of the Physical Society of Japan.

[31]  T. Sakakibara,et al.  Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2 , 2017, Science Advances.

[32]  Masatoshi Sato,et al.  Topological superconductors: a review , 2016, Reports on progress in physics. Physical Society.

[33]  M. X. Wang,et al.  Nodeless superconducting gap in the caged-type superconductors Y5Rh6Sn18 and Lu5Rh6Sn18 , 2015 .

[34]  S. Y. Li,et al.  Nodeless superconductivity in Ca3Ir4Sn13: Evidence from quasiparticle heat transport , 2012, 1202.5164.

[35]  H. Löhneysen,et al.  Superconductivity on the border of weak itinerant ferromagnetism in UCoGe. , 2007, Physical review letters.

[36]  M. Sigrist,et al.  Exotic superconducting properties in the electron-hole-compensated heavy-fermion "Semimetal" URu2Si2. , 2007, Physical review letters.

[37]  Y. Matsuda,et al.  Nodal structure of unconventional superconductors probed by angle resolved thermal transport measurements , 2006, cond-mat/0611371.

[38]  Y. Nakajima,et al.  Anomalous quasiparticle transport in the superconducting state of CeCoIn 5 , 2005, cond-mat/0506071.

[39]  E. Ressouche,et al.  Coexistence of superconductivity and ferromagnetism in URhGe , 2022 .

[40]  H. Shishido,et al.  Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5. , 2001, Physical review letters.

[41]  E. Pugh,et al.  Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 , 2000, Nature.

[42]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[43]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[44]  H. Suderow,et al.  Thermal conductivity and gap structure of the superconducting phases of UPt3 , 1997, cond-mat/9702089.

[45]  Lu,et al.  Thermal conductivity of an untwinned YBa2Cu3O7- delta single crystal and a new interpretation of the superconducting state thermal transport. , 1992, Physical review letters.

[46]  K. Kadowaki,et al.  Universal relationship of the resistivity and specific heat in heavy-Fermion compounds , 1986 .

[47]  A. Leggett,et al.  A theoretical description of the new phases of liquid He-3 , 1975 .

[48]  J. B. Sousa,et al.  Mixed-state thermal conductivity of type II superconductors , 1970 .

[49]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[50]  H. Suderow,et al.  Thermal conductivity and gap structure of the superconducting phases of UPt 3 , 2008 .

[51]  L. Taillefer,et al.  Universal Heat Conduction in YBa 2 Cu 3 O 6 , 1997 .

[52]  T. Wolf,et al.  Low temperature specific heat of YBa2Cu3O7−δ , 1988 .