Improved Combinatory Categorial Grammar Induction with Boundary Words and Bayesian Inference

Combinatory Categorial Grammar (CCG) is an expressive grammar formalism which is able to capture long-range dependencies. However, building large and wide-coverage treebanks for CCG is expensive and time-consuming. In this paper, we focus on the problem of unsupervised CCG induction from plain texts. Based on the baseline model in (Bisk and Hockenmaier, 2012), we propose following two improvements: (1) we utilize boundary part-of-speech (POS) tags to capture lexical information; (2) we perform nonparametric Bayesian inference based on the Pitman-Yor process to learn compact grammars. Experiments on English Penn treebank demonstrate the effectiveness of our boundary model and Bayesian learning.

[1]  Steve Young,et al.  Applications of stochastic context-free grammars using the Inside-Outside algorithm , 1990 .

[2]  Phil Blunsom,et al.  Inducing Compact but Accurate Tree-Substitution Grammars , 2009, NAACL.

[3]  Mark Steedman,et al.  Combinatory Categorial Grammar , 2011 .

[4]  Vladimir Solmon,et al.  The estimation of stochastic context-free grammars using the Inside-Outside algorithm , 2003 .

[5]  Yonatan Bisk,et al.  Simple Robust Grammar Induction with Combinatory Categorial Grammars , 2012, AAAI.

[6]  Suresh Manandhar,et al.  Unsupervised Lexical Learning with Categorical Grammars Using the LLL Corpus , 2001, Learning Language in Logic.

[7]  Mark Johnson,et al.  Improving nonparameteric Bayesian inference: experiments on unsupervised word segmentation with adaptor grammars , 2009, NAACL.

[8]  Mark Steedman,et al.  Wide-Coverage Semantic Representations from a CCG Parser , 2004, COLING.

[9]  Ted Briscoe,et al.  Learning Stochastic Categorial Grammars , 1997, CoNLL.

[10]  Timothy Baldwin,et al.  Multilingual Deep Lexical Acquisition for HPSGs via Supertagging , 2006, EMNLP.

[11]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[12]  Haizhou Li,et al.  Learning Translation Boundaries for Phrase-Based Decoding , 2010, NAACL.

[13]  Phil Blunsom,et al.  Probabilistic Inference for Machine Translation , 2008, EMNLP.

[14]  Rens Bod,et al.  An All-Subtrees Approach to Unsupervised Parsing , 2006, ACL.

[15]  Phil Blunsom,et al.  Unsupervised Induction of Tree Substitution Grammars for Dependency Parsing , 2010, EMNLP.

[16]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[17]  Noah A. Smith,et al.  Shared Logistic Normal Distributions for Soft Parameter Tying in Unsupervised Grammar Induction , 2009, NAACL.

[18]  Thomas L. Griffiths,et al.  Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Models , 2006, NIPS.

[19]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[20]  Luke S. Zettlemoyer,et al.  Online Learning of Relaxed CCG Grammars for Parsing to Logical Form , 2007, EMNLP.

[21]  Phil Blunsom,et al.  Inducing Tree-Substitution Grammars , 2010, J. Mach. Learn. Res..

[22]  Mark Johnson,et al.  Using Universal Linguistic Knowledge to Guide Grammar Induction , 2010, EMNLP.

[23]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[24]  James R. Curran,et al.  Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models , 2007, Computational Linguistics.

[25]  Martin Kay,et al.  Syntactic Process , 1979, ACL.

[26]  Dan Klein,et al.  A Generative Constituent-Context Model for Improved Grammar Induction , 2002, ACL.

[27]  Michael C. Frank,et al.  Learning Words and Their Meanings from Unsegmented Child-directed Speech , 2010, HLT-NAACL.

[28]  Yoav Seginer,et al.  Fast Unsupervised Incremental Parsing , 2007, ACL.

[29]  Elias Ponvert Inducing Combinatory Categorial Grammars with Genetic Algorithms , 2007, ACL.

[30]  Richard Johansson,et al.  Extended Constituent-to-Dependency Conversion for English , 2007, NODALIDA.

[31]  Stephen Clark,et al.  Syntax-Based Grammaticality Improvement using CCG and Guided Search , 2011, EMNLP.

[32]  John DeNero,et al.  A Feature-Rich Constituent Context Model for Grammar Induction , 2012, ACL.

[33]  Valentin I. Spitkovsky,et al.  Viterbi Training Improves Unsupervised Dependency Parsing , 2010, CoNLL.

[34]  David J. Weir,et al.  The equivalence of four extensions of context-free grammars , 1994, Mathematical systems theory.

[35]  Mark Steedman,et al.  Generative Models for Statistical Parsing with Combinatory Categorial Grammar , 2002, ACL.

[36]  Mark Steedman,et al.  CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank , 2007, CL.

[37]  Mark Johnson,et al.  Improving Unsupervised Dependency Parsing with Richer Contexts and Smoothing , 2009, NAACL.

[38]  Andy Way,et al.  Supertagged Phrase-Based Statistical Machine Translation , 2007, ACL.

[39]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[40]  Menno van Zaanen,et al.  ABL: Alignment-Based Learning , 2000, COLING.

[41]  Min Zhang,et al.  Improved Constituent Context Model with Features , 2012, PACLIC.

[42]  Dan Klein,et al.  Corpus-Based Induction of Syntactic Structure: Models of Dependency and Constituency , 2004, ACL.

[43]  James R. Curran,et al.  Log-Linear Models for Wide-Coverage CCG Parsing , 2003, EMNLP.

[44]  Mark Steedman,et al.  Grammar Induction from Text Using Small Syntactic Prototypes , 2011, IJCNLP.