A three-dimensional model of the thermomechanical behavior of shape memory alloys

Abstract A new macro-scale model of shape memory alloys is developed within the framework of generalized standard materials with internal constraints [Moumni, Z., 1995. Sur la modelisation du changement de phase a l’etat solide. Ph.D. Thesis, Ecole Nationale Superieure des Ponts et Chaussees]. It is shown that the introduction of two state variables: the martensite volume fraction and the martensite orientation strain tensor, is sufficient to account for several effects exhibited by SMAs subject to thermomechanical loading, namely: self-accommodation, orientation and reorientation or martensite, as well as superelasticity and one-way shape memory. These phenomena are simulated using the same set of constitutive equations and evolution laws. A simple procedure for identifying the parameters of the model is described in detail and a validation against experimental data is conducted. The model is then used to analyze a 3D SMA structure representing a superelastic stent. Cyclic loading and other pertaining phenomena like training and two-way shape memory are considered in the second part of this paper.

[1]  Marcelo A. Savi,et al.  A constitutive model for shape memory alloys considering tensile¿compressive asymmetry and plasticity , 2005 .

[2]  Stefan Seelecke,et al.  Thermodynamic aspects of shape memory alloys , 2001 .

[3]  S. Silling Dynamic growth of martensitic plates in an elastic material , 1992 .

[4]  Zhiqiang Li,et al.  Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion––from localization to homogeneous deformation , 2002 .

[5]  Dimitris C. Lagoudas,et al.  Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs , 2004 .

[6]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[7]  Kikuaki Tanaka,et al.  Micromechanical simulations of thermomechanical behavior in shape memory alloys: transformation conditions and thermomechanical hystereses , 2002 .

[8]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[9]  Christian Lexcellent,et al.  About modelling the shape memory alloy behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions , 2006 .

[10]  J. K. Knowles,et al.  A One-Dimensional Continuum Model for Shape-Memory Alloys , 1994 .

[11]  M. Frémond,et al.  Non-Smooth Thermomechanics , 2001 .

[12]  K. Tanaka,et al.  Thermodynamic models of pseudoelastic behaviour of shape memory alloys , 1992 .

[13]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[14]  G. Bourbon,et al.  The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model , 2000 .

[15]  J. Krumhansl,et al.  Twin Boundaries in Ferroelastic Media without Interface Dislocations , 1984 .

[16]  L. C. Brinson,et al.  Simplifications and Comparisons of Shape Memory Alloy Constitutive Models , 1996 .

[17]  Zhang Xiangyang,et al.  A non-invariant plane model for the interface in CuAlNi single crystal shape memory alloys , 2000 .

[18]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[19]  L. Brinson,et al.  A Simplified Multivariant SMA Model Based on Invariant Plane Nature of Martensitic Transformation , 2002 .

[20]  Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions , 2002 .

[21]  Z. Q. Li,et al.  The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension , 2002 .

[22]  Ferdinando Auricchio,et al.  Modelling of SMA materials: Training and two way memory effects , 2003 .

[23]  U. Stefanelli,et al.  Structure result for steady-state solutions of a one-dimensional Frémond model of SMA , 2002 .

[24]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .

[25]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[26]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[27]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[28]  Thomas J. Pence,et al.  A Thermomechanical Model for a One Variant Shape Memory Material , 1994 .

[29]  Bernard Halphen,et al.  Plastic and visco-plastic materials with generalized potential , 1974 .

[30]  L. Brinson,et al.  Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach , 1997 .

[31]  E. Bonetti Global solution to a Fremond model for shape memory alloys with thermal memory , 1999 .

[32]  Marcelo A. Savi,et al.  Phenomenological Modeling and Numerical Simulation of Shape Memory Alloys: A Thermo-Plastic-Phase Transformation Coupled Model , 2002 .

[33]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[34]  S. Calloch,et al.  A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings , 2004 .

[35]  Global existence for the three-dimensional Fre´mond model of shape memory alloys , 1995 .

[36]  P. Alart,et al.  Solid–solid phase transition modelling: relaxation procedures, configurational energies and thermomechanical behaviours , 1999 .

[37]  K. Tanaka,et al.  A thermomechanical description of materials with internal variables in the process of phase transitions , 1982 .

[38]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .

[39]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[40]  G. Bourbon,et al.  Thermodynamical model of cyclic behaviour of TiNi and CuZnAl shape memory alloys under isothermal undulated tensile tests , 1996 .

[41]  F. Falk Model free energy, mechanics, and thermodynamics of shape memory alloys , 1980 .

[42]  Stelios Kyriakides,et al.  On the nucleation and propagation of phase transformation fronts in a NiTi alloy , 1997 .

[43]  L. C. Brinson,et al.  Phase diagram based description of the hysteresis behavior of shape memory alloys , 1998 .

[44]  M. Fremond,et al.  Matériaux à mémoire de forme , 1987 .

[45]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[46]  Alan R. Bishop,et al.  Computer simulation of martensitic textures , 1998 .

[47]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 2. Polycrystal model , 2000 .

[48]  Dimitris C. Lagoudas,et al.  Residual deformation of active structures with SMA actuators , 1999 .

[49]  Marcelo A. Savi,et al.  On the Fremond’s constitutive model for shape memory alloys , 2004 .

[50]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[51]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[52]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[53]  Landau theory for shape memory polycrystals , 2003, cond-mat/0309206.

[54]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model , 2000 .

[55]  Christian Lexcellent,et al.  Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams , 2001 .

[56]  E. Sacco,et al.  Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching–bending loadings , 2001 .

[57]  Sang-Joo Kim,et al.  Cyclic effects in shape-memory alloys: a one-dimensional continuum model , 1997 .

[58]  C. Lexcellent,et al.  Thermodynamics of isotropic pseudoelasticity in shape memory alloys , 1998 .

[59]  U. Stefanelli,et al.  Positivity of the temperature for phase transitions with micro-movements , 2007 .

[60]  Q. Sun,et al.  Some Recent Advances in Experimental Study of Shape Memory Alloys , 1999 .

[61]  Zdeněk P. Bažant,et al.  Three-dimensional constitutive model for shape memory alloys based on microplane model , 2002 .

[62]  Qingping Sun,et al.  On Deformation of A-M Interface in Single Crystal Shape Memory Alloys and Some Related Issues , 1999 .

[63]  J. Shaw A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities , 2002 .

[64]  Dirk Helm,et al.  Thermomechanical behavior of shape memory alloys , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[65]  Yinong Liu,et al.  Lüders-like deformation associated with stress-induced martensitic transformation in NiTi , 2004 .