Sodium–Sulfur Batteries

Sodium–sulfur (Na–S) battery technology has high potential for energy storage and load leveling in power systems, and it is one of the most developed types of high temperature battery. Owing to outstanding energy density, high efficiency of charge/discharge, low materials cost, and cycle life of up to 15 years, Na–S batteries are attractive for their use in relatively large-scale energy storage system applications. However, there are several challenges to overcome for the safe operation of Na–S batteries, mostly related to the high operation temperatures. In this sense, the development of new solid electrolytes that possess high ionic conductivities at intermediate or room temperature is crucial. β-Alumina and NASICON structure electrolytes are revised, and new alternatives, such as ceramic/polymer composites, are also gathered. There also exists novel focus on Na–S technology in order to increase the obtained capacity and cyclability consisting of using nanostructured carbon to host sulfur or to bind it to a polymer. In addition, hybrid technologies combining Na–S with ZEBRA or oxygen rocking-chair batteries are currently arising as alternative storage devices. As Na–S technology was introduced in the mid-1970s, a number of different patents have been developed. Trends observed in the new patents are twofold: on the one hand, they aim to integrate these batteries into the electrical grid in order to compensate the fluctuations of renewable energies; on the other hand, they show battery component improvements in order to obtain lower operating temperatures. Keywords: batteries; Na–S; Li–S; β-alumina; β″-alumina

[1]  Christopher J. Ellison,et al.  New battery strategies with a polymer/Al2O3 separator , 2014 .

[2]  Teuku Meurah Indra Mahlia,et al.  A review of available methods and development on energy storage; technology update , 2014 .

[3]  Guangyu Tu,et al.  Optimal sizing and control strategy of isolated grid with wind power and energy storage system , 2014 .

[4]  Keeyoung Jung,et al.  Finite element analysis study on the thermomechanical stability of thermal compression bonding (TCB) joints in tubular sodium sulfur cells , 2014 .

[5]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[6]  N. Mizuno,et al.  A new rechargeable sodium battery utilizing reversible topotactic oxygen extraction/insertion of CaFeO(z) (2.5 ≤ z ≤ 3) in an organic electrolyte. , 2014, Journal of the American Chemical Society.

[7]  Sebastian Wenzel,et al.  Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte , 2013 .

[8]  Byung Gon Kim,et al.  One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. , 2013, Nano letters.

[9]  Z. Wen,et al.  Development and characterizations of Bi2O3-containing glass–ceramic sealants for sodium sulfur battery , 2013 .

[10]  Dong Ju Lee,et al.  Alternative materials for sodium ion–sulphur batteries , 2013 .

[11]  Sally M. Benson,et al.  On the importance of reducing the energetic and material demands of electrical energy storage , 2013 .

[12]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[13]  Z. Wen,et al.  Main Challenges for High Performance NAS Battery: Materials and Interfaces , 2013 .

[14]  Zhenguo Yang,et al.  High energy density Na–S/NiCl2 hybrid battery , 2013 .

[15]  Zhenguo Yang,et al.  The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries , 2012 .

[16]  André Faaij,et al.  Performance of batteries for electric vehicles on short and longer term , 2012 .

[17]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[18]  A. Virkar,et al.  Synthesis of lithium-beta-alumina by various ion-exchange and conversion processes , 2012 .

[19]  Min Yang,et al.  Membranes in Lithium Ion Batteries , 2012, Membranes.

[20]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[21]  L. Gaines,et al.  Status of life cycle inventories for batteries , 2012 .

[22]  John B. Goodenough,et al.  Rechargeable batteries: challenges old and new , 2012, Journal of Solid State Electrochemistry.

[23]  D. Birnie On the structural integrity of the spinel block in the β"-alumina structure. , 2012, Acta crystallographica. Section B, Structural science.

[24]  Chengfei Zhu,et al.  Structure and properties relationships of beta-Al2O3 electrolyte materials , 2012 .

[25]  Supriya Roy,et al.  Framework flexibility of sodium zirconium phosphate: role of disorder, and polyhedral distortions from Monte Carlo investigation , 2012, Journal of Materials Science.

[26]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[27]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[28]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[29]  Pu Chen,et al.  Reality and Future of Rechargeable Lithium Batteries , 2011 .

[30]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[31]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[32]  Jou-Hyeon Ahn,et al.  Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte , 2011 .

[33]  Hui Yang,et al.  Synthesis and characterization of titanium doped sodium beta″-alumina , 2011 .

[34]  Ziping Feng,et al.  The Effect of CTAB on the Citrate Sol-gel Process for the Synthesis of Sodium Beta-Alumina Nano-Powders , 2011 .

[35]  J. Liang,et al.  Functional Materials for Rechargeable Batteries , 2011, Advanced materials.

[36]  M. Vithal,et al.  A wide-ranging review on Nasicon type materials , 2011 .

[37]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[38]  Z. Wen,et al.  Mechanochemical synthesis of Na-β/β″-Al2O3 , 2010 .

[39]  Z. Wen,et al.  New glass-ceramic sealants for Na/S battery , 2010 .

[40]  K. Obata,et al.  Relationship between aging time and EMF change of potentiometric CO2 device using Na1+xZr2SixP3−xO12 (0 < x < 3) , 2009 .

[41]  T. Fukunaga,et al.  Structure of Na2S–GeS2 glasses studied by using neutron and X-ray diffraction and reverse Monte Carlo modeling , 2009 .

[42]  P. Kamaraj,et al.  Synthesis of NASICON—A Molecular Precursor-Based Approach , 2008 .

[43]  S. Yashonath,et al.  Ionic conduction in the solid state , 2006 .

[44]  Jou-Hyeon Ahn,et al.  Room-temperature solid-state sodium/sulfur battery , 2006 .

[45]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[46]  S. Komornicki,et al.  Synthesis and properties of Nasicon-type materials , 2005 .

[47]  R. Laine,et al.  Synthesis of Ultrafine β″‐Alumina Powders via Flame Spray Pyrolysis of Polymeric Precursors , 2005 .

[48]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[49]  T. Minami,et al.  Preparation of Li2S–P2S5 Amorphous Solid Electrolytes by Mechanical Milling , 2004 .

[50]  A. Yamada,et al.  Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system , 2004 .

[51]  Xiaotian Yang,et al.  Investigation of CO2 sensor based on NASICON synthesized by a new sol–gel process , 2003 .

[52]  S. Kondo,et al.  Solid-state lithium battery with graphite anode , 2003 .

[53]  R. O. Fuentes,et al.  Optimised NASICON ceramics for Na+ sensing , 2002 .

[54]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[55]  A. West,et al.  Sodium Mobility in the NASICON Series Na1+xZr2-xInx(PO4)3 , 2000 .

[56]  Daniele Mazza,et al.  Conductivity Measurements on Nasicon and Nasicon-modified materials , 1999 .

[57]  P. Fabry,et al.  NASICON structure for alkaline ion recognition , 1997 .

[58]  T. Gnanasekaran,et al.  Low-temperature synthesis of β-aluminas by a sol-gel technique , 1997 .

[59]  W. Weppner,et al.  Preparation of Polycrystalline Divalent Beta Alumina Ceramics by Ion Exchange from K- and Na-Beta"-Alumina Polycrystals , 1991 .

[60]  K. Terabe,et al.  Formation and crystallization of beta-alumina from precursor prepared by sol-gel method using metal alkoxides , 1987 .

[61]  T. Jacobsen,et al.  A rechargeable all-solid-state sodium cell with polymer electrolyte , 1985 .

[62]  D. Crișan,et al.  The influence of the powders synthesis method on the microstructure of lanthanum-stabilized β-alumina ceramics , 1985 .

[63]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[64]  P. Nicholson,et al.  The relative stability of spray-frozen/freeze-dried β″-Al2O3 powders , 1980 .

[65]  Takehiko Takahashi,et al.  ß-Al2O3 synthesis from m-Al2O3 , 1980 .

[66]  Anil V. Virkar,et al.  Resistivity‐Microstructure Relations in Lithia‐Stabilized Polycrystalline β”‐Alumina , 1978 .

[67]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[68]  P. Morgan Low temperature synthetic studies of beta-aluminas , 1976 .

[69]  E. Subbarao,et al.  Synthesis of sodium and ? alumina , 1975 .

[70]  Steve W. Martin,et al.  Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling , 2012 .

[71]  Jiulin Wang,et al.  Room temperature Na/S batteries with sulfur composite cathode materials , 2007 .

[72]  S. Park,et al.  Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates , 2005 .

[73]  P. Fabry,et al.  Characterization of a NASICON based potentiometric CO2 sensor , 2005 .

[74]  A. Martucci,et al.  Sol-gel synthesis of Na+ beta-Al2O3 powders , 2004 .

[75]  E. R. Losilla,et al.  Crystal chemistry and ion conductivity of the Na1 + xTi2 − xAlx(PO4)3(0 ≤ x ≤ 0.9) NASICON series , 2000 .

[76]  T. Jacobsen,et al.  Poly(ethylene oxide)―sodium perchlorate electrolytes in solid-state sodium cells , 1988 .

[77]  C. C. Addison,et al.  518. Liquid metals. Part V. The role of oxide films in the wetting of iron, cobalt, and nickel by liquid sodium, and by solutions of barium and calcium in liquid sodium , 1962 .