Formalizing best practice for energy system optimization modelling

Energy system optimization models (ESOMs) are widely used to generate insight that informs energy and environmental policy. Using ESOMs to produce policy-relevant insight requires significant modeler judgement, yet little formal guidance exists on how to conduct analysis with ESOMs. To address this shortcoming, we draw on our collective modelling experience and conduct an extensive literature review to formalize best practice for energy system optimization modelling. We begin by articulating a set of overarching principles that can be used to guide ESOM-based analysis. To help operationalize the guiding principles, we outline and explain critical steps in the modelling process, including how to formulate research questions, set spatio-temporal boundaries, consider appropriate model features, conduct and refine the analysis, quantify uncertainty, and communicate insights. We highlight the need to develop and refine formal guidance on ESOM application, which comes at a critical time as ESOMs are being used to inform national climate targets.

[1]  D. Greene How Consumers Value Fuel Economy: A Literature Review , 2010 .

[2]  Bruce Edmonds,et al.  The Aqua Book: Guidance on Producing Quality Analysis for Government by HM Treasury , 2016, J. Artif. Soc. Soc. Simul..

[3]  Sonia Yeh,et al.  Incorporating Behavioral Effects from Vehicle Choice Models into Bottom-Up Energy Sector Models , 2015 .

[4]  M. Haller,et al.  Fluctuating renewables in a long-term climate change mitigation strategy , 2011 .

[5]  M. V. Asselt,et al.  An updated scenario typology , 2003 .

[6]  Evelina Trutnevyte,et al.  Does cost optimization approximate the real-world energy transition? , 2016 .

[7]  Neil Strachan,et al.  An integrated systematic analysis of uncertainties in UK energy transition pathways , 2015 .

[8]  Neil Strachan,et al.  Reinvigorating the scenario technique to expand uncertainty consideration , 2016, Climatic Change.

[9]  M. Strubegger,et al.  User's Guide for MESSAGE III , 1995 .

[10]  Poul Erik Grohnheit Impact of technology and regional specific discount rates , 2013 .

[11]  Robert J. Lempert,et al.  Shaping the next one hundred years , 2003 .

[12]  Steven P. Schnaars How to develop and use scenarios , 1987 .

[13]  Zhenhong Lin,et al.  Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices , 2017 .

[14]  Thomas Huld,et al.  Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria , 2017 .

[15]  Gregor Betz What’s the Worst Case? The Methodology of Possibilistic Prediction , 2010 .

[16]  Thomas Martinsen,et al.  Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models , 2011 .

[17]  Keywan Riahi,et al.  Impacts of considering electric sector variability and reliability in the MESSAGE model , 2013 .

[18]  William J. Nuttall,et al.  Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices? , 2006 .

[19]  James Price,et al.  Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models , 2017 .

[20]  J. Ogden,et al.  Renewable and low carbon hydrogen for California-Modeling the long term evolution of fuel infrastructure using a quasi-spatial TIMES model , 2013 .

[21]  Francesco Moresino,et al.  SOCIO-MARKAL: Integrating energy consumption behavioral changes in the technological optimization framework , 2011 .

[22]  S. Messner,et al.  Endogenized technological learning in an energy systems model , 1997 .

[23]  Nebojsa Nakicenovic,et al.  Identifying dangers in an uncertain climate , 2001, Nature.

[24]  Semida Silveira,et al.  OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development , 2011 .

[25]  George Wright,et al.  The origins and evolution of scenario techniques in long range business planning , 2005 .

[26]  Alan S. Manne,et al.  MARKAL-MACRO: An overview , 1992 .

[27]  Stephen H. Schneider,et al.  Integrated assessment modeling of global climate change: Transparent rational tool for policy making or opaque screen hiding value‐laden assumptions? , 1997 .

[28]  Jeffrey C. Peters,et al.  The GTAP-Power Data Base: Disaggregating the Electricity Sector in the GTAP Data Base , 2016 .

[29]  Paul E. Dodds,et al.  Methodologies for representing the road transport sector in energy system models , 2014 .

[30]  Zhenhong Lin,et al.  Who Will More Likely Buy PHEV: A Detailed Market Segmentation Analysis , 2010 .

[31]  Joseph F. DeCarolis,et al.  Using modeling to generate alternatives (MGA) to expand our thinking on energy futures , 2011 .

[32]  P. Burger Embedded Case Study Methods: Integrating Quantitative and Qualitative Knowledge , 2001 .

[33]  J. DeCarolis,et al.  The case for repeatable analysis with energy economy optimization models , 2012, 2001.10858.

[34]  R. Loulou,et al.  MARKAL Model with Elastic Demands: Application to Greenhouse Gas Emission Control , 1996 .

[35]  H. Rogner,et al.  Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland , 2014 .

[36]  Neil Strachan,et al.  The role of international drivers on UK scenarios of a low-carbon society , 2008 .

[37]  Will McDowall,et al.  Energy scenario choices: Insights from a retrospective review of UK energy futures , 2016 .

[38]  Neil Strachan,et al.  Indirect CO2 Emission Implications of Energy System Pathways: Linking IO and TIMES Models for the UK. , 2015, Environmental science & technology.

[39]  P. V. Notten,et al.  Scenario development : a typology of approaches , 2006 .

[40]  Anderson Rodrigo de Queiroz,et al.  A Sampling-based Decomposition Algorithm with Application to Hydrothermal Scheduling: Cut Formation and Solution Quality , 2011 .

[41]  Birgit Fais,et al.  Spatially and Temporally Explicit Energy System Modelling to Support the Transition to a Low Carbon Energy Infrastructure – Case Study for Wind Energy in the UK , 2015 .

[42]  M. Godet,et al.  Creating the future: The use and misuse of scenarios , 1996 .

[43]  M. Kirkengen,et al.  The role of the discount rates in energy systems optimisation models , 2016 .

[44]  E. Masini,et al.  Scenarios as Seen from a Human and Social Perspective , 2000 .

[45]  John Weyant,et al.  Insights Not Numbers : The Appropriate Use of Economic Models , 2008 .

[46]  Niclas Mattsson,et al.  Introducing uncertain learning in an energy system model: a pilot study using GENIE , 2002 .

[47]  Shey-Huei Sheu,et al.  Production , Manufacturing and Logistics Optimal economic production quantity policy for imperfect process with imperfect repair and maintenance , 2008 .

[48]  V. Krey,et al.  Implications of high energy prices for energy system and emissions--The response from an energy model for Germany , 2007 .

[49]  Amit Kanudia,et al.  Minimax regret strategies for greenhouse gas abatement: methodology and application , 1997, Oper. Res. Lett..

[50]  Ryuichi Kitamura,et al.  Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project , 1993 .

[51]  Wenying Chen,et al.  Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model , 2007 .

[52]  H. Jacobsen Integrating the bottom-up and top-down approach to energy–economy modelling: the case of Denmark , 1998 .

[53]  Amit Kanudia,et al.  Robust responses to climate change via stochastic MARKAL: The case of Québec , 1996, Eur. J. Oper. Res..

[54]  Evelina Trutnevyte,et al.  EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective , 2013 .

[55]  Adam Hawkes,et al.  Energy systems modeling for twenty-first century energy challenges , 2014 .

[56]  Pascal Lesage,et al.  Empirically based uncertainty factors for the pedigree matrix in ecoinvent , 2016, The International Journal of Life Cycle Assessment.

[57]  Vaclav Smil,et al.  Perils of Long-Range Energy Forecasting , 2000 .

[58]  R. Lempert,et al.  Shaping the Next One Hundred Years: New Methods for Quantitative Long-Term Policy Analysis , 2003 .

[59]  Christina Demski,et al.  Creating a national citizen engagement process for energy policy , 2014, Proceedings of the National Academy of Sciences.

[60]  Michel Godet,et al.  The Art of Scenarios and Strategic Planning - Tools and Pitfalls , 2000 .

[61]  Gabrial Anandarajah,et al.  Multi-cluster Technology Learning in TIMES: A Transport Sector Case Study with TIAM-UCL , 2015 .

[62]  Baruch Fischhoff,et al.  A method to evaluate the usability of interactive climate change impact decision aids , 2014, Climatic Change.

[63]  Hans-Jürgen Dr. Klüppel,et al.  The Revision of ISO Standards 14040-3 - ISO 14040: Environmental management – Life cycle assessment – Principles and framework - ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines , 2005 .

[64]  Silvio Funtowicz,et al.  Are all models wrong? , 2020, Computational and systems oncology.

[65]  Valentina Bosetti,et al.  Uncertain R&D, Backstop Technology and Ghgs Stabilization , 2007 .

[66]  Marjolein B.A. van Asselt,et al.  Practising the scenario-axes technique , 2006 .

[67]  Sofia Simoes,et al.  The impact of location on competitiveness of wind and PV electricity generation - Case study for Austria , 2013, 2013 10th International Conference on the European Energy Market (EEM).

[68]  N. Strachan,et al.  Critical mid-term uncertainties in long-term decarbonisation pathways , 2012 .

[69]  Alain Haurie,et al.  Combining Stochastic Optimization and Monte Carlo Simulation to Deal with Uncertainties in Climate Policy Assessment , 2012, Environmental Modeling & Assessment.

[70]  Brian Ó Gallachóir,et al.  Soft-linking of a power systems model to an energy systems model , 2012 .

[71]  Erwin Schmid,et al.  Assessing the economic wind power potential in Austria , 2013 .

[72]  Fabian Kesicki,et al.  Intertemporal issues and marginal abatement costs in the UK transport sector , 2012 .

[73]  Peter C. Bishop,et al.  The current state of scenario development: an overview of techniques , 2007 .

[74]  Leo Schrattenholzer,et al.  Learning rates for energy technologies , 2001 .

[75]  John P. Weyant,et al.  A perspective on integrated assessment , 2009 .

[76]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[77]  Gabrial Anandarajah,et al.  Interactions and Implications of Renewable and Climate Change Policy on UK Energy Scenarios , 2010 .

[78]  Leo Schrattenholzer,et al.  MESSAGE-MACRO: Linking an energy supply model with a macroeconomic module and solving it iteratively , 2000 .

[79]  P. Schoemaker Scenario Planning: A Tool for Strategic Thinking , 1995 .

[80]  Nick Hughes,et al.  A Historical Overview of Strategic Scenario Planning A Joint Working Paper of the UKERC and the EON.UK/EPSRC Transition Pathways Project , 2009 .

[81]  H. D. Jouvenel,et al.  A Brief Methodological Guide to Scenario Building , 2000 .

[82]  Jerome R. Ravetz,et al.  Uncertainty and Quality in Science for Policy , 1990 .

[83]  Evelina Trutnevyte,et al.  Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050 , 2017 .

[84]  Roland W. Scholz,et al.  Embedded Case Study Methods , 2002 .

[85]  Brian Wynne,et al.  Technical analysis of IIASA energy scenarios , 1984, Nature.

[86]  Mark Jaccard,et al.  Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal , 2006 .

[87]  Ramachandran Kannan,et al.  The development and application of a temporal MARKAL energy system model using flexible time slicing , 2011 .

[88]  G. Anandarajah,et al.  The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis , 2011 .

[89]  John P. Weyant,et al.  Modeling for insights, not numbers: the experiences of the energy modeling forum , 1982 .

[90]  John P. Weyant,et al.  Approaches for performing uncertainty analysis in large-scale energy/economic policy models , 2000 .

[91]  Danny Pudjianto,et al.  Linking a storyline with multiple models: A cross-scale study of the UK power system transition , 2014 .

[92]  Elmar Kriegler,et al.  Harmonization vs. fragmentation: overview of climate policy scenarios in EMF27 , 2014, Climatic Change.

[93]  David W. Keith,et al.  Improving the way we think about projecting future energy use and emissions of carbon dioxide , 2008 .

[94]  Florian Heiss,et al.  Discrete Choice Methods with Simulation , 2016 .

[95]  Neil Strachan,et al.  The uncertain but critical role of demand reduction in meeting long-term energy decarbonisation targets , 2014 .

[96]  Sonia Yeh,et al.  Incorporating travel behaviour and travel time into TIMES energy system models , 2014 .

[97]  Brian Ó Gallachóir,et al.  Long‐term energy models: Principles, characteristics, focus, and limitations , 2013 .

[98]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[99]  Neil Strachan,et al.  UK energy policy ambition and UK energy modelling—fit for purpose? , 2011 .

[100]  G. Finnveden,et al.  Scenario types and techniques: Towards a user's guide , 2006 .

[101]  Nick Hughes,et al.  Towards improving the relevance of scenarios for public policy questions: A proposed methodological framework for policy relevant low carbon scenarios , 2013 .

[102]  M. Haller,et al.  Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation , 2012 .

[103]  Lena Neij,et al.  Evaluating energy efficiency policies with energy-economy models , 2010 .

[104]  Göran Finnveden,et al.  Towards a user's guide to scenarios : A report on scenario types and scenario techniques , 2005 .

[105]  W. Huss,et al.  Scenario planning—What style should you use? , 1987 .

[106]  S. Schneider What is 'dangerous' climate change? , 2001, Nature.

[107]  Nadia Maïzi,et al.  Integrating household behavior and heterogeneity into the TIMES-Households model , 2015 .

[108]  Manuel Welsch,et al.  Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code , 2012 .

[109]  Neil Strachan,et al.  Failure to achieve stringent carbon reduction targets in a second-best policy world , 2012, Climatic Change.

[110]  Gabrial Anandarajah,et al.  Pathways to a Low Carbon Economy: Energy Systems Modelling , 2008 .

[111]  David L. Greene,et al.  Uncertainty, loss aversion, and markets for energy efficiency , 2011 .

[112]  Gabrial Anandarajah,et al.  Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios , 2013 .

[113]  Wolf Häfele,et al.  A technical appraisal of the IIASA energy scenarios? A rebuttal , 1986 .

[114]  Maryse Labriet,et al.  Introduction: Energy Systems Modelling for Decision-Making , 2015 .

[115]  Not Indicated,et al.  International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance , 2010 .

[116]  Kristian Lindgren,et al.  Induced Technological Change in a Limited Foresight Optimization Model , 2005 .

[117]  Maryse Labriet,et al.  ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure , 2008, Comput. Manag. Sci..

[118]  E. D. Brill,et al.  Modeling to Generate Alternatives: The HSJ Approach and an Illustration Using a Problem in Land Use Planning , 1982 .

[119]  Zhenhong Lin,et al.  Promoting the Market for Plug-In Hybrid and Battery Electric Vehicles , 2011 .

[120]  Joseph F. DeCarolis,et al.  Modeling for insight using Tools for Energy Model Optimization and Analysis (Temoa) , 2013 .

[121]  J. A. Wardekker,et al.  Uncertainty Communication : Issues and good practice , 2007 .

[122]  A. Manne,et al.  Buying greenhouse insurance: The economics costs of carbon dioxide emission limits , 1992 .

[123]  Paul E. Dodds,et al.  Integrating housing stock and energy system models as a strategy to improve heat decarbonisation assessments , 2014 .

[124]  Joseph Alcamo,et al.  Chapter Six The SAS Approach: Combining Qualitative and Quantitative Knowledge in Environmental Scenarios , 2008 .

[125]  Carlos Silva,et al.  High-resolution modeling framework for planning electricity systems with high penetration of renewables , 2013 .

[126]  Steve Pye,et al.  The iterative contribution and relevance of modelling to UK energy policy , 2009 .

[127]  Benjamin P. Bryant,et al.  Thinking Inside the Box , 2010 .

[128]  N. Strachan,et al.  Economic Impacts of Future Changes in the Energy System - Global Perspectives , 2015 .

[129]  E. Schmid,et al.  Assessing the economic wind power potential in Austria , 2012, 2012 9th International Conference on the European Energy Market.

[130]  B. Ó. Gallachóir,et al.  Informing Energy and Climate Policies Using Energy Systems Models , 2015 .

[131]  P. Jaramillo,et al.  A review of learning rates for electricity supply technologies , 2015 .

[132]  T. Kram,et al.  Endogenous learning and technology clustering: analysis with MARKAL model of the Western European energy system , 2000 .

[133]  B. Li,et al.  Modelling to generate alternatives with an energy system optimization model , 2016, Environ. Model. Softw..

[134]  Jonathan G. Koomey,et al.  WHAT CAN HISTORY TEACH US? A Retrospective Examination of Long-Term Energy Forecasts for the United States* , 2002 .

[135]  Evangelos Panos,et al.  Methodological Significance of Temporal Granularity in Energy-Economic Models—Insights from the MARKAL/TIMES Framework , 2015 .

[136]  I. Keppo,et al.  Short term decisions for long term problems – The effect of foresight on model based energy systems analysis , 2010 .

[137]  Goran Strbac,et al.  Building a Resilient UK Energy System , 2011 .

[138]  N. Strachan,et al.  The role of bioenergy in the UK's energy future formulation and modelling of long-term UK bioenergy scenarios. , 2010 .

[139]  John M. Flach,et al.  MGA: a decision support system for complex, incompletely defined problems , 1990, IEEE Trans. Syst. Man Cybern..

[140]  Neil Strachan,et al.  Characterising the Evolution of Energy System Models Using Model Archaeology , 2014, Environmental Modeling & Assessment.

[141]  R. Kannan,et al.  Hybrid modelling of long-term carbon reduction scenarios for the UK , 2008 .

[142]  B. Keepin A technical appraisal of the IIASA energy scenarios , 1984 .

[143]  Paul Upham,et al.  Original research articleEnergy model, boundary object and societal lens: 35 years of the MARKAL model in the UK , 2014 .

[144]  Neil Strachan,et al.  Methodological review of UK and international low carbon scenarios , 2010 .

[145]  Neil Strachan,et al.  Reinventing the energy modelling–policy interface , 2016, Nature Energy.

[146]  Gabrial Anandarajah,et al.  Towards a low-carbon economy: scenarios and policies for the UK , 2011 .