LTPConstraint: a transfer learning based end-to-end method for RNA secondary structure prediction

[1]  Pieter Abbeel,et al.  Decision Transformer: Reinforcement Learning via Sequence Modeling , 2021, NeurIPS.

[2]  Daniel Cohen-Or,et al.  BalaGAN: Cross-Modal Image Translation Between Imbalanced Domains , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[3]  Cordelia Schmid,et al.  ViViT: A Video Vision Transformer , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Daniel Cohen-Or,et al.  Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Kai Zhao,et al.  LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search , 2019, Bioinform..

[6]  Qiang Ye,et al.  Improving RNA secondary structure prediction via state inference with deep recurrent neural networks , 2019, Computational and Mathematical Biophysics.

[7]  Manoranjan Paul,et al.  Enhanced Transfer Learning with ImageNet Trained Classification Layer , 2019, PSIVT.

[8]  2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT) , 2018 .

[9]  Yavuz Canbay,et al.  A Review on RNA Secondary Structure Prediction Algorithms , 2018, 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT).

[10]  Rico Sennrich,et al.  Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures , 2018, EMNLP.

[11]  Chao Yang,et al.  A Survey on Deep Transfer Learning , 2018, ICANN.

[12]  Hosna Jabbari,et al.  Knotty: efficient and accurate prediction of complex RNA pseudoknot structures , 2018, Bioinform..

[13]  Dezhong Deng,et al.  bpRNA: large-scale automated annotation and analysis of RNA secondary structure , 2018, bioRxiv.

[14]  Michael F. Sloma,et al.  Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs , 2017, PLoS Comput. Biol..

[15]  Gaurav Sharma,et al.  TurboFold II: RNA structural alignment and secondary structure prediction informed by multiple homologs , 2017, Nucleic acids research.

[16]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[17]  Said Benhlima,et al.  A heuristic algorithm for RNA secondary structure based on genetic algorithm , 2017, 2017 Intelligent Systems and Computer Vision (ISCV).

[18]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  George Trigeorgis,et al.  Domain Separation Networks , 2016, NIPS.

[20]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[22]  Fei-Fei Li,et al.  Visualizing and Understanding Recurrent Networks , 2015, ArXiv.

[23]  Mohammad Ibrahim Khan,et al.  Pseudoknots Prediction on RNA Secondary Structure Using Term Rewriting , 2015, IWBBIO.

[24]  Takaya Saito,et al.  The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets , 2015, PloS one.

[25]  Yoshua Bengio,et al.  End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results , 2014, ArXiv.

[26]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[27]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[28]  J. Doudna,et al.  Insights into RNA structure and function from genome-wide studies , 2014, Nature Reviews Genetics.

[29]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[30]  Rhiju Das,et al.  Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. , 2012, Biochemistry.

[31]  Rhiju Das,et al.  Quantitative DMS mapping for automated RNA secondary structure inference , 2012, 1207.1312.

[32]  David A. Bader,et al.  GTfold: Enabling parallel RNA secondary structure prediction on multi-core desktops , 2012, BMC Research Notes.

[33]  Jie Zhang,et al.  SpliceDisease database: linking RNA splicing and disease , 2011, Nucleic Acids Res..

[34]  P. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology : AMB.

[35]  Kristian Rother,et al.  RNA tertiary structure prediction with ModeRNA , 2011, Briefings Bioinform..

[36]  David H. Mathews,et al.  Automated RNA tertiary structure prediction from secondary structure and low‐resolution restraints , 2011, J. Comput. Chem..

[37]  D. Mathews,et al.  ProbKnot: fast prediction of RNA secondary structure including pseudoknots. , 2010, RNA.

[38]  Feng Ding,et al.  On the significance of an RNA tertiary structure prediction. , 2010, RNA.

[39]  David H. Mathews,et al.  RNAstructure: software for RNA secondary structure prediction and analysis , 2010, BMC Bioinformatics.

[40]  David H. Mathews,et al.  NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure , 2009, Nucleic Acids Res..

[41]  Lili Wan,et al.  RNA and Disease , 2009, Cell.

[42]  K. Weeks,et al.  A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. , 2007, Journal of the American Chemical Society.

[43]  K. Weeks,et al.  Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution , 2006, Nature Protocols.

[44]  Serafim Batzoglou,et al.  CONTRAfold: RNA secondary structure prediction without physics-based models , 2006, ISMB.

[45]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[46]  D Gautheret,et al.  Identification of base-triples in RNA using comparative sequence analysis. , 1995, Journal of molecular biology.

[47]  Evan W. Steeg,et al.  Neural networks, adaptive optimization, and RNA secondary structure prediction , 1993 .

[48]  Ignacio Tinoco,et al.  A dynamic programming algorithm for finding alternative RNA secondary structures , 1986, Nucleic Acids Res..

[49]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[50]  Xiao Zheng,et al.  An Attention-based Bi-LSTM Method for Visual Object Classification via EEG , 2021, Biomed. Signal Process. Control..

[51]  Stephen Lin,et al.  Swin Transformer: Hierarchical Vision Transformer using Shifted Windows , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[52]  Uwe Stilla,et al.  Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[53]  P. Tarpey,et al.  Comparative sequence analysis. , 2004, Methods in molecular medicine.

[54]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[55]  C. Pleij,et al.  RNA pseudoknots: structure, detection, and prediction. , 1989, Methods in enzymology.

[56]  I. Kuntz,et al.  Tertiary Structure Prediction , 1989 .