Efficient Ambiguity Detection in C-NFA, a Step Towards the Inference on Non Deterministic Automata

This work addresses the problem of the inference of non deterministic automata (NFA) from given positive and negative samples. We propose here to consider this problem as a particular case of the inference of unambiguous finite state classifier. We are then able to present an efficient incompatibility NFA detection framework for state merging inference process.

[1]  René Alquézar Mancho Symbolic and connectionist learning techniques for grammatical inference , 1997 .

[2]  Barak A. Pearlmutter,et al.  Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm , 1998, ICGI.

[3]  E. Mark Gold,et al.  Complexity of Automaton Identification from Given Data , 1978, Inf. Control..

[4]  A.,et al.  INCREMENTAL GRAMMATICAL INFERENCE FROM POSITIVE ANDNEGATIVE DATA USING UNBIASED FINITE STATE AUTOMATA , 1994 .

[5]  Joao Marques-Silva,et al.  Efficient search techniques for the inference of minimum size finite automata , 1998, Proceedings. String Processing and Information Retrieval: A South American Symposium (Cat. No.98EX207).

[6]  Jacques Nicolas Regular Inference as a graph coloring problem , 1997 .

[7]  J. Oncina,et al.  INFERRING REGULAR LANGUAGES IN POLYNOMIAL UPDATED TIME , 1992 .

[8]  Jerome A. Feldman,et al.  On the Synthesis of Finite-State Machines from Samples of Their Behavior , 1972, IEEE Transactions on Computers.

[9]  Kevin J. Lang Random DFA's can be approximately learned from sparse uniform examples , 1992, COLT '92.

[10]  Pierre Dupont Utilisation et apprentissage de modeles de langage pour la reconnaissance de la parole continue , 1996 .

[11]  Sheng Yu,et al.  NFA to DFA Transformation for Finite Languages , 1996, Workshop on Implementing Automata.

[12]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[13]  Takashi Yokomori,et al.  Learning non-deterministic finite automata from queries and counterexamples , 1994, Machine Intelligence 13.