Efficient Ambiguity Detection in C-NFA, a Step Towards the Inference on Non Deterministic Automata
暂无分享,去创建一个
[1] René Alquézar Mancho. Symbolic and connectionist learning techniques for grammatical inference , 1997 .
[2] Barak A. Pearlmutter,et al. Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm , 1998, ICGI.
[3] E. Mark Gold,et al. Complexity of Automaton Identification from Given Data , 1978, Inf. Control..
[4] A.,et al. INCREMENTAL GRAMMATICAL INFERENCE FROM POSITIVE ANDNEGATIVE DATA USING UNBIASED FINITE STATE AUTOMATA , 1994 .
[5] Joao Marques-Silva,et al. Efficient search techniques for the inference of minimum size finite automata , 1998, Proceedings. String Processing and Information Retrieval: A South American Symposium (Cat. No.98EX207).
[6] Jacques Nicolas. Regular Inference as a graph coloring problem , 1997 .
[7] J. Oncina,et al. INFERRING REGULAR LANGUAGES IN POLYNOMIAL UPDATED TIME , 1992 .
[8] Jerome A. Feldman,et al. On the Synthesis of Finite-State Machines from Samples of Their Behavior , 1972, IEEE Transactions on Computers.
[9] Kevin J. Lang. Random DFA's can be approximately learned from sparse uniform examples , 1992, COLT '92.
[10] Pierre Dupont. Utilisation et apprentissage de modeles de langage pour la reconnaissance de la parole continue , 1996 .
[11] Sheng Yu,et al. NFA to DFA Transformation for Finite Languages , 1996, Workshop on Implementing Automata.
[12] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[13] Takashi Yokomori,et al. Learning non-deterministic finite automata from queries and counterexamples , 1994, Machine Intelligence 13.