A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loading

In order to use wood for structural and load-bearing purposes in mechanical engineering, basic information on the impact behaviour of the material over a wide temperature range is needed. Diffuse porous hardwoods such as solid birch wood (Betula pendula) and solid beech wood (Fagus sylvatica) are particularly suited for the production of engineered wood products (EWPs) such as laminated veneer lumber (LVL) or plywood due to their processability in a veneer peeling process. In the frame of this study, solid birch wood and solid beech wood samples (300 × 20 × 20 mm3) were characterised by means of an impact pendulum test setup (working capacity of 150 J) at five temperature levels, ranging from −30 °C to +90 °C. The pendulum hammer (mass = 15 kg) was equipped with an acceleration sensor in order to obtain the acceleration pulse and deceleration force besides the impact bending energy. In both solid birch wood and solid beech wood, the deceleration forces were highest at temperatures at and below zero. While the average impact bending energy for solid birch wood remained almost constant over the whole considered temperature range, it was far less stable and prone to higher scattering for solid beech wood.

[1]  Cedou Kumpenza,et al.  Temperature-Related Properties of Solid Birch Wood under Quasi-Static and Dynamic Bending , 2020, Materials.

[2]  U. Müller,et al.  Durability of Wood Exposed to Alternating Climate Test and Natural Weathering , 2020, Forests.

[3]  P. Šedivka,et al.  Comparison and Analysis of Radial and Tangential Bending of Softwood and Hardwood at Static and Dynamic Loading , 2020, Forests.

[4]  Christian Kurzböck,et al.  Crashsichere Holzverbundwerkstoffe in Leichtbaukarosserien der Zukunft , 2019, ATZ - Automobiltechnische Zeitschrift.

[5]  Thomas Jost,et al.  Crash simulation of wood and composite wood for future automotive engineering , 2019, Wood Material Science & Engineering.

[6]  I. Aydin,et al.  Comparison of Birch and Beech Wood in Terms of Economic and Technological Properties for Plywood Manufacturing , 2019, Drvna industrija.

[7]  Peter Niemz,et al.  Physik des Holzes und der Holzwerkstoffe , 2016 .

[8]  Jing-hui Jiang,et al.  Flexural property of wood in low temperature environment , 2015 .

[9]  M. Merhar,et al.  Impact and Dynamic Bending Strength Determination of Norway Spruce by Impact Pendulum Deceleration , 2015 .

[10]  J. P. Davim,et al.  Research Developments in Wood Engineering and Technology , 2013 .

[11]  U. Müller,et al.  Reliability of wood adhesive bonds in a 50 year old glider construction , 2011, European Journal of Wood and Wood Products.

[12]  Emin Bayraktar,et al.  State of art of impact tensile test (ITT) : Its historical development as a simulated crash test of industrial materials and presentation of new ductile/brittle transition diagrams , 2008 .

[13]  C. Gerhards Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects , 2007 .

[14]  W. Küch Untersuchungen an Holz, Sperrholz und Schichthölzern im Hinblick auf ihre Verwendung im Flugzeugbau , 1939, Holz als Roh- und Werkstoff.

[15]  H. Krech Größe und zeitlicher Ablauf von Kraft und Durchbiegung beim Schlagbiegeversuch an Holz und ihr Zusammenhang mit der Bruchschlagarbeit , 2007, Holz als Roh- und Werkstoff.

[16]  Meng Gong,et al.  Fracture and fatigue in wood , 2003 .

[17]  Kenneth J. Fridley,et al.  Wood and Wood-Based Materials: Current Status and Future of a Structural Material , 2002 .

[18]  A. Reiterer The influence of temperature on the mode I fracture behavior of wood , 2001 .

[19]  Arno Burmester,et al.  Formbeständigkeit von Holz gegenüber Feuchtigkeit – Grundlagen und Vergütungsverfahren , 1970 .

[20]  F. Kollmann,et al.  Technologie des Holzes und der Holzwerkstoffe , 1955 .