Merging Binaries in the Galactic Center: The eccentric Kozai-Lidov mechanism with stellar evolution

Most, if not all, stars in the field are born in binary configurations or higher multiplicity systems. In dense stellar environment such as the Galactic Center (GC), many stars are expected to be in binary configurations as well. These binaries form hierarchical triple body systems, with the massive black hole (MBH) as the third, distant object. The stellar binaries are expected to undergo large amplitude eccentricity and inclination oscillations via the so-called "eccentric Kozai-Lidov" (EKL) mechanism. These eccentricity excitations, combined with post main sequence stellar evolution, can drive the inner stellar binaries to merge. We study the mergers of stellar binaries in the inner 0.1 pc of the GC caused by gravitational perturbations due to the MBH. We run a large set of Monte Carlo simulations that include the secular evolution of the orbits, general relativistic precession, tides, and post-main-sequence stellar evolution. We find that about 13 % of the initial binary population will have merged after a few million years and about 29 % after a few billion years. These expected merged systems represent a new class of objects at the GC and we speculate that they are connected to G2-like objects and the young stellar population.

[1]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[2]  S. Naoz The Eccentric Kozai-Lidov Effect and Its Applications , 2016, 1601.07175.

[3]  S. Dong,et al.  Double-averaging can fail to characterize the long-term evolution of Lidov–Kozai Cycles and derivation of an analytical correction , 2016, 1601.04345.

[4]  T. Fragos,et al.  FORMATION OF BLACK HOLE LOW-MASS X-RAY BINARIES IN HIERARCHICAL TRIPLE SYSTEMS , 2015, 1510.02093.

[5]  Y. Levin,et al.  DOUBLE TIDAL DISRUPTIONS IN GALACTIC NUCLEI , 2015, 1504.02787.

[6]  J. Macquart,et al.  ON DETECTING MILLISECOND PULSARS AT THE GALACTIC CENTER , 2015, 1504.02492.

[7]  A. Eckart,et al.  MONITORING THE DUSTY S-CLUSTER OBJECT (DSO/G2) ON ITS ORBIT TOWARD THE GALACTIC CENTER BLACK HOLE , 2014, 1410.8731.

[8]  S. Tremaine,et al.  A numerical study of vector resonant relaxation , 2014, 1406.1178.

[9]  P. Wizinowich,et al.  DETECTION OF GALACTIC CENTER SOURCE G2 AT 3.8 μm DURING PERIAPSE PASSAGE , 2014, 1410.1884.

[10]  H. Perets,et al.  SECULAR DYNAMICS IN HIERARCHICAL THREE-BODY SYSTEMS WITH MASS LOSS AND MASS TRANSFER , 2014, 1406.3035.

[11]  H. Perets,et al.  SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS , 2014, 1405.6029.

[12]  D. Fabrycky,et al.  MERGERS AND OBLIQUITIES IN STELLAR TRIPLES , 2014, 1405.5223.

[13]  A. Loeb,et al.  CHAOS IN THE TEST PARTICLE ECCENTRIC KOZAI–LIDOV MECHANISM , 2014, 1405.0494.

[14]  J. Ott,et al.  The galactic center : Feeding and feedback in a normal galactic nucleus : proceedings of the 303rd symposium of the International Astronomical Union held in Santa Fe, NM, USA, September 30 - October 4, 2013 , 2014 .

[15]  P. Amaro-Seoane,et al.  A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING , 2014, 1401.6456.

[16]  J. Guillochon,et al.  POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A* , 2014, 1401.2990.

[17]  A. Loeb,et al.  ECCENTRICITY GROWTH AND ORBIT FLIP IN NEAR-COPLANAR HIERARCHICAL THREE-BODY SYSTEMS , 2013, 1310.6044.

[18]  P. Amaro-Seoane,et al.  THE FRAGMENTING PAST OF THE DISK AT THE GALACTIC CENTER: THE CULPRIT FOR THE MISSING RED GIANTS , 2013, 1310.0458.

[19]  B. Shappee,et al.  Rapid Eccentricity Oscillations and the Mergers of Compact Objects in Hierarchical Triples , 2013, 1308.5682.

[20]  Norman Murray,et al.  BLACK HOLE TRIPLE DYNAMICS: A BREAKDOWN OF THE ORBIT AVERAGE APPROXIMATION AND IMPLICATIONS FOR GRAVITATIONAL WAVE DETECTIONS , 2013, 1308.3674.

[21]  T. Alexander,et al.  MASSIVE BINARIES IN THE VICINITY OF Sgr A* , 2013, 1307.7996.

[22]  C. Wegg,et al.  Production of EMRIs in supermassive black hole binaries , 2013, 1310.5745.

[23]  Extreme Orbital Evolution from Hierarchical Secular Coupling of Two Giant Planets , 2013, 1310.5048.

[24]  E. Becklin,et al.  The Keplerian orbit of G2 , 2013, Proceedings of the International Astronomical Union.

[25]  T. Alexander,et al.  CONSTRAINING THE DARK CUSP IN THE GALACTIC CENTER BY LONG-PERIOD BINARIES , 2013, 1308.6638.

[26]  E. Becklin,et al.  KECK OBSERVATIONS OF THE GALACTIC CENTER SOURCE G2: GAS CLOUD OR STAR? , 2013, 1304.5280.

[27]  R. Poleski,et al.  OGLE-2002-BLG-360: from a gravitational microlensing candidate to an overlooked red transient , 2013, 1304.1694.

[28]  R. Poleski,et al.  The dusty aftermath of the V1309 Sco binary merger , 2013, 1301.1694.

[29]  Jessica R. Lu,et al.  STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION , 2013, 1301.0540.

[30]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[31]  Bence Kocsis,et al.  RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS , 2012, 1206.4316.

[32]  W. Farr,et al.  Secular Dynamics in Hierarchical Three-Body Systems , 2011, 1107.2414.

[33]  J. Miralda-Escudé The cloud of gas falling toward the central black hole in the milky way , 2012 .

[34]  D. Merritt,et al.  RELATIVITY AND THE EVOLUTION OF THE GALACTIC CENTER S-STAR ORBITS , 2012, 1211.4594.

[35]  S. Dong,et al.  The rate of WD-WD head-on collisions may be as high as the SNe Ia rate , 2012, 1211.4584.

[36]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[37]  A. Ghez,et al.  Galactic center research: manifestations of the central black hole , 2012, 1207.6755.

[38]  B. Shappee,et al.  THE MASS-LOSS-INDUCED ECCENTRIC KOZAI MECHANISM: A NEW CHANNEL FOR THE PRODUCTION OF CLOSE COMPACT OBJECT–STELLAR BINARIES , 2012, 1204.1053.

[39]  H. Perets,et al.  SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA , 2012, 1203.2938.

[40]  R. Genzel,et al.  PHYSICS OF THE GALACTIC CENTER CLOUD G2, ON ITS WAY TOWARD THE SUPERMASSIVE BLACK HOLE , 2012, 1201.1414.

[41]  A. Loeb,et al.  Disruption of a proto-planetary disc by the black hole at the milky way centre , 2011, Nature Communications.

[42]  C. Gammie,et al.  A gas cloud on its way towards the supermassive black hole at the Galactic Centre , 2011, Nature.

[43]  M. Schmidt,et al.  High-resolution optical spectroscopy of V838 Monocerotis in 2009 , 2011, 1103.1763.

[44]  D. Merritt,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS , 2010, 1008.5369.

[45]  K. Ulaczyk,et al.  V1309 Scorpii: merger of a contact binary , 2010, 1012.0163.

[46]  R. Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[47]  S. Tremaine,et al.  Resonant relaxation and the warp of the stellar disc in the Galactic Centre , 2010, 1006.0001.

[48]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[49]  J. Faber,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER AND ITS CONSEQUENCES , 2009, 0909.1959.

[50]  C. Hopman,et al.  BINARY DYNAMICS NEAR A MASSIVE BLACK HOLE , 2009, 0906.0374.

[51]  Daniel C. Fabrycky,et al.  ON THE TRIPLE ORIGIN OF BLUE STRAGGLERS , 2009, 0901.4328.

[52]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[53]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[54]  H. Perets RUNAWAY AND HYPERVELOCITY STARS IN THE GALACTIC HALO: BINARY REJUVENATION AND TRIPLE DISRUPTION , 2008, 0802.1004.

[55]  T. Alexander,et al.  STRONG MASS SEGREGATION AROUND A MASSIVE BLACK HOLE , 2008, 0808.3150.

[56]  T. Alexander,et al.  DYNAMICAL EVOLUTION OF THE YOUNG STARS IN THE GALACTIC CENTER: N-BODY SIMULATIONS OF THE S-STARS , 2008, 0807.2340.

[57]  D. Fabrycky,et al.  Cassini States with Dissipation: Why Obliquity Tides Cannot Inflate Hot Jupiters , 2007, astro-ph/0703418.

[58]  A. Ghez,et al.  Photometric Stellar Variability in the Galactic Center , 2006, astro-ph/0701082.

[59]  L. Lucy,et al.  Spectroscopic binaries with components of similar mass , 2006, astro-ph/0607225.

[60]  A. Loeb,et al.  Hypervelocity collisions of binary stars at the Galactic Centre , 2006, astro-ph/0609440.

[61]  R. Abuter,et al.  GCIRS 16SW: A Massive Eclipsing Binary in the Galactic Center , 2006, astro-ph/0608215.

[62]  Chris L. Fryer,et al.  A New Look at the Binary Characteristics of Massive Stars , 2006, astro-ph/0605069.

[63]  T. Alexander,et al.  Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.

[64]  M. Pinsonneault,et al.  Binaries Like to Be Twins: Implications for Doubly Degenerate Binaries, the Type Ia Supernova Rate, and Other Interacting Binaries , 2005, astro-ph/0511193.

[65]  T. Alexander,et al.  Stellar Processes Near the Massive Black Hole in the Galactic Center , 2005, astro-ph/0508106.

[66]  W. N. Brandt,et al.  A Remarkable Low-Mass X-Ray Binary within 0.1 Parsecs of the Galactic Center , 2005, astro-ph/0503572.

[67]  P. Saha,et al.  The tidal disruption rate in dense galactic cusps containing a supermassive binary black hole , 2004, astro-ph/0410610.

[68]  Jessica R. Lu,et al.  Stellar Orbits around the Galactic Center Black Hole , 2003, astro-ph/0306130.

[69]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[70]  S. Tremaine,et al.  Ejection of Hypervelocity Stars by the (Binary) Black Hole in the Galactic Center , 2003, astro-ph/0309084.

[71]  Yuri Levin,et al.  Stellar Disk in the Galactic Center: A Remnant of a Dense Accretion Disk? , 2003, astro-ph/0303436.

[72]  A. M. Ghez,et al.  Full Three Dimensional Orbits for Multiple Stars on Close Approaches to the Central Supermassive Black Hole , 2003, astro-ph/0303151.

[73]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[74]  S. Aarseth,et al.  Tidal interactions in star cluster simulations , 2001 .

[75]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[76]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[77]  D. Heggie,et al.  Binary--Single-Star Scattering. VII. Hard Binary Exchange Cross Sections for Arbitrary Mass Ratios: Numerical Results and Semianalytic FITS , 1996, astro-ph/9604016.

[78]  Mark R. Morris,et al.  Massive star formation near the Galactic center and the fate of the stellar remnants , 1993 .

[79]  J. Hills,et al.  Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole , 1988, Nature.

[80]  R. Sanders,et al.  Is the galactic centre black hole a dwarf? , 1986, Nature.

[81]  P. Hut Binaries as a heat source in stellar dynamics: release of binding energy , 1983 .

[82]  John N. Bahcall,et al.  Binary-single star scattering. I: Numerical experiments for equal masses , 1983 .

[83]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[84]  R. Wolf,et al.  Star distribution around a massive black hole in a globular cluster. II. Unequal star masses , 1977 .

[85]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[86]  J. Jeans The origin of binary systems , 1919 .