Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior

[1]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[2]  A. Hodgkin,et al.  The action of calcium on the electrical properties of squid axons , 1957, The Journal of physiology.

[3]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[4]  D. Purpura,et al.  Intracellular Potentials of Cortical Neurons during Focal Epileptogenic Discharges , 1963, Science.

[5]  C. A. Marsan,et al.  CORTICAL CELLULAR PHENOMENA IN EXPERIMENTAL EPILEPSY: INTERICTAL MANIFESTATIONS. , 1964, Experimental neurology.

[6]  K. Takahashi,et al.  Slow and fast groups of pyramidal tract cells and their respective membrane properties. , 1965, Journal of neurophysiology.

[7]  D. Purpura,et al.  Properties of synaptic activities and spike potentials of neurons in immature neocortex. , 1965, Journal of neurophysiology.

[8]  D A Pollen,et al.  Electrical constants of neurons in the motor cortex of the cat. , 1966, Journal of neurophysiology.

[9]  R Llinás,et al.  Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat , 1970, The Journal of physiology.

[10]  R. Llinás,et al.  Electrophysiological properties of dendrites and somata in alligator Purkinje cells. , 1971, Journal of neurophysiology.

[11]  K. Krnjević,et al.  Injections of calcium ions into spinal motoneurones , 1972, The Journal of physiology.

[12]  J. Cooley,et al.  Action potential of the motorneuron , 1973 .

[13]  N. Standen Voltage‐clamp studies of the calcium inward current in an identified snail neurone: comparison with the sodium inward current. , 1975, The Journal of physiology.

[14]  N. Standen Calcium and sodium ions as charge carriers in the action potential of an identified snail neurone. , 1975, The Journal of physiology.

[15]  R. Meech,et al.  Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. , 1975, The Journal of physiology.

[16]  R Llinás,et al.  Electroresponsive properties of dendrites in central neurons. , 1975, Advances in neurology.

[17]  H. Lux,et al.  Some aspects of the electroanatomy of dendrites. , 1975, Advances in neurology.

[18]  P. Schwartzkroin,et al.  Characteristics of CA1 neurons recorded intracellularly in the hippocampalin vitro slice preparation , 1975, Brain Research.

[19]  Goldensohn Es Initiation and propagation of epileptogenic foci. , 1975 .

[20]  G. Sypert,et al.  Cerebral cortex neurons with extra spikes: a normal substrate for epileptic discharges? , 1975, Brain Research.

[21]  R. Llinás,et al.  Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. J. Smith,et al.  Depolarizing afterpotentials and burst production in molluscan pacemaker neurons. , 1976, Journal of neurophysiology.

[23]  R. Eckert,et al.  A voltage‐sensitive persistent calcium conductance in neuronal somata of Helix. , 1976, The Journal of physiology.

[24]  A. Wyler,et al.  Burst structure in developing penicillin epileptic feline foci , 1976, Experimental Neurology.

[25]  T A Pedley,et al.  The role of extracellular potassium in hippocampal epilepsy. , 1976, Archives of neurology.

[26]  W H Calvin,et al.  Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat. , 1976, Journal of neurophysiology.

[27]  E. Barrett,et al.  Separation of two voltage‐sensitive potassium currents, and demonstration of a tetrodotoxin‐resistant calcium current in frog motoneurones. , 1976, The Journal of physiology.

[28]  R. Llinás,et al.  Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Schwartzkroin,et al.  Further characteristics of hippocampal CA1 cells in vitro , 1977, Brain Research.

[30]  D. Prince,et al.  Penicillin‐induced epileptiform activity in the hippocampal in vitro preparation , 1977, Annals of neurology.

[31]  A. Pellionisz,et al.  A computer model of cerebellar purkinje cells , 1977, Neuroscience.

[32]  R. Llinás,et al.  Control of rhythmic firing in normal and axotomized cat spinal motoneurons. , 1977, Journal of neurophysiology.

[33]  C. Nicholson,et al.  Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Prince,et al.  Epileptogenesis in neocortical slices , 1977, Brain Research.

[35]  P. Schwartzkroin,et al.  Probable calcium spikes in hippocampal neurons , 1977, Brain Research.

[36]  R. Llinás,et al.  The spatial distribution of ionic conductances in normal and axotomized motorneurons , 1977, Neuroscience.

[37]  K. Krnjević,et al.  EGTA and motoneuronal after‐potentials. , 1978, Journal of Physiology.

[38]  R. Eckert,et al.  Potassium activation associated with intraneuronal free calcium. , 1978, Science.

[39]  D. Tillotson,et al.  Inactivation without facilitation of calcium conductance in caesium-loaded neurones of Aplysia , 1978, Nature.

[40]  P. Schwartzkroin Secondary range rhythmic spiking in hippocampal neurons , 1978, Brain Research.

[41]  D. Prince,et al.  Cellular and field potential properties of epileptogenic hippocampal slices , 1978, Brain Research.

[42]  A. Brown,et al.  The calcium current of Helix neuron , 1978, The Journal of general physiology.

[43]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[45]  R. Llinás,et al.  Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. , 1979, Journal of neurophysiology.