Sub-Pixel Crop Type Classification Using PROBA-V 100 m NDVI Time Series and Reference Data from Sentinel-2 Classifications

[1]  Cardona Alzate,et al.  Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .

[2]  R. Lunetta,et al.  Comparison of sub-pixel classification approaches for crop-specific mapping , 2009, 2009 17th International Conference on Geoinformatics.

[3]  Weiguo Liu,et al.  Comparison of non-linear mixture models: sub-pixel classification , 2005 .

[4]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[5]  L. Bastin Comparison of fuzzy c-means classification, linear mixture modelling and MLC probabilities as tools for unmixing coarse pixels , 1997 .

[6]  A. Belward,et al.  The Best Index Slope Extraction ( BISE): A method for reducing noise in NDVI time-series , 1992 .

[7]  Stien Heremans,et al.  Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders (Belgium): a multi-criteria comparison , 2015 .

[8]  Patrick Hostert,et al.  The EnMAP-Box - A Toolbox and Application Programming Interface for EnMAP Data Processing , 2015, Remote. Sens..

[9]  Clement Atzberger,et al.  How much does multi-temporal Sentinel-2 data improve crop type classification? , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[10]  Mathias Schardt,et al.  Representation of an alpine treeline ecotone in SPOT 5 HRG data , 2007 .

[11]  R. Lucas,et al.  Non-linear mixture modelling without end-members using an artificial neural network , 1997 .

[12]  N. A. Quarmby,et al.  Linear mixture modelling applied to AVHRR data for crop area estimation , 1992 .

[13]  Leon N. Cooper,et al.  Training Data Selection for Support Vector Machines , 2005, ICNC.

[14]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[15]  P. Atkinson,et al.  Mapping sub-pixel proportional land cover with AVHRR imagery , 1997 .

[16]  Miao Zhang,et al.  Crop Mapping Using PROBA-V Time Series Data at the Yucheng and Hongxing Farm in China , 2016, Remote. Sens..

[17]  Qian Du,et al.  Supervised Sub-Pixel Mapping for Change Detection from Remotely Sensed Images with Different Resolutions , 2017, Remote. Sens..

[18]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[19]  B. Boruff,et al.  Subpixel land-cover classification for improved urban area estimates using Landsat , 2017 .

[20]  Ruben Van De Kerchove,et al.  Crop Area Mapping Using 100-m Proba-V Time Series , 2016, Remote. Sens..

[21]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[22]  Stefan Adriaensen,et al.  Evaluation of PROBA-V Collection 1: Refined Radiometry, Geometry, and Cloud Screening , 2018, Remote. Sens..

[23]  Amir Hossein Alavi,et al.  Machine learning in geosciences and remote sensing , 2016 .

[24]  G. Foody,et al.  Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions , 1994 .

[25]  C. Woodcock,et al.  Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation , 2013 .

[26]  Marie-Julie Lambert,et al.  Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m , 2016, Remote. Sens..

[27]  Francesca Bovolo,et al.  A Novel Technique for Subpixel Image Classification Based on Support Vector Machine , 2010, IEEE Transactions on Image Processing.

[28]  Herman Eerens,et al.  Image time series processing for agriculture monitoring , 2014, Environ. Model. Softw..

[29]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[30]  G. Foody A fuzzy sets approach to the representation of vegetation continua from remotely sensed data : an example from lowland health , 1992 .

[31]  Herman Eerens,et al.  Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[32]  W. Dierckx,et al.  PROBA-V mission for global vegetation monitoring: standard products and image quality , 2014 .