Schémas de subdivision, analyses multirésolutions non-linéaires. Applications
暂无分享,去创建一个
[1] Nira Dyn,et al. Convexity preservation of the four-point interpolatory subdivision scheme , 1999, Comput. Aided Geom. Des..
[2] Marie-Laurence Mazure,et al. Subdivision Schemes and Irregular Grids , 2004, Numerical Algorithms.
[3] T. Yu,et al. Smoothness Analysis of Nonlinear Subdivision Schemes of Homogeneous and Affine Invariant Type , 2005 .
[4] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[5] S. Mallat. A wavelet tour of signal processing , 1998 .
[6] Albert Cohen,et al. Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..
[7] A. Harten. Multiresolution representation of data: a general framework , 1996 .
[8] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[9] Wolfgang Dahmen,et al. Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.
[10] Joe Warren,et al. Binary Subdivision Schemes for Functions over Irregular Knot Sequences , 1995 .
[11] P. Oswald,et al. Stability of Nonlinear Subdivision and Multiscale Transforms , 2010 .
[12] Leif Kobbelt,et al. A variational approach to subdivision , 1996, Comput. Aided Geom. Des..
[13] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[14] Peter Oswald. Smoothness of Nonlinear Median-Interpolation Subdivision , 2004, Adv. Comput. Math..
[15] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[16] Byung-Gook Lee,et al. Stationary subdivision schemes reproducing polynomials , 2006, Comput. Aided Geom. Des..
[17] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[18] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[19] Francesc Aràndiga,et al. Weighted ENO interpolation and applications , 2004 .
[20] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[21] D. Levin,et al. Analysis of asymptotically equivalent binary subdivision schemes , 1995 .
[22] Basarab Matei. Smoothness characterization and stability in nonlinear multiscale framework: theoretical results , 2005 .
[23] Antonio Marquina,et al. Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws , 1994, SIAM J. Sci. Comput..
[24] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[25] Malcolm A. Sabin,et al. A family of subdivision schemes with cubic precision , 2008, Comput. Aided Geom. Des..
[26] Charles A. Micchelli,et al. Using the refinement equation for the construction of pre-wavelets , 1991, Numerical Algorithms.
[27] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[28] Basarab Matei. Méthodes multirésolutions non-linéaires : applications au traitement d'image , 2002 .
[29] Ruud van Damme,et al. Shape Preserving Interpolatory Subdivision Schemes for Nonuniform Data , 2002, J. Approx. Theory.
[30] Johannes Wallner,et al. Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties , 2007 .
[31] Philipp Grohs,et al. Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..
[32] Francesc Aràndiga,et al. Nonlinear multiscale decompositions: The approach of A. Harten , 2000, Numerical Algorithms.
[33] Rosa Donat,et al. Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..
[34] Charles A. Micchelli,et al. Nonlinear Stationary Subdivision , 1998 .
[35] A. Harten. ENO schemes with subcell resolution , 1989 .
[36] C. Micchelli,et al. Stationary Subdivision , 1991 .
[37] A. Harten. Adaptive Multiresolution Schemes for Shock Computations , 1994 .
[38] Carolina Vittoria Beccari,et al. An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control , 2007, Comput. Aided Geom. Des..
[39] Francesc Aràndiga,et al. Multiresolution Based on Weighted Averages of the Hat Function II: Nonlinear Reconstruction Techniques , 1998, SIAM J. Sci. Comput..
[40] Nira Dyn,et al. Approximation order of interpolatory nonlinear subdivision schemes , 2010, J. Comput. Appl. Math..
[41] S. Osher,et al. Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .
[42] George Merrill Chaikin,et al. An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..
[43] S. Jaffard. Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .
[44] Leif Kobbelt. Using the Discrete Fourier Transform to Analyze the Convergence of Subdivision Schemes , 1998 .
[45] Carolina Vittoria Beccari,et al. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..
[46] Antonio Marquina,et al. Power ENO methods: a fifth-order accurate weighted power ENO method , 2004 .
[47] Nicolas Aspert. Non-linear subdivision of univariate signals and discrete surfaces , 2003 .
[48] Björn Sjögreen,et al. Numerical experiments with the multiresolution scheme for the compressible Euler equations , 1995 .
[49] Thierry BLUzAbstract. SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .
[50] P. Shunmugaraj,et al. A non-stationary subdivision scheme for curve interpolation , 2008 .
[51] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[52] David L. Donoho,et al. Nonlinear Pyramid Transforms Based on Median-Interpolation , 2000, SIAM J. Math. Anal..
[53] Peter J. Oswald. Smoothness of nonlinear subdivision schemes , 2002 .
[54] David Levin,et al. Using Laurent polynomial representation for the analysis of non‐uniform binary subdivision schemes , 1999, Adv. Comput. Math..
[55] Barna L. Bihari,et al. Application of generalized wavelets: an adaptive multiresolution scheme , 1995 .
[56] F. Kuijt. Convexity preserving interpolation - stationary nonlinear subdivision and splines , 1998 .
[57] Neil A. Dodgson,et al. An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..
[58] A. Harten,et al. Multiresolution Based on Weighted Averages of the Hat Function I: Linear Reconstruction Techniques , 1998 .
[59] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[60] Nira Dyn,et al. Geometrically Controlled 4-Point Interpolatory Schemes , 2005, Advances in Multiresolution for Geometric Modelling.
[61] Joe D. Warren,et al. A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..
[62] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[63] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..