Schémas de subdivision, analyses multirésolutions non-linéaires. Applications

Les schemas de subdivisions ont ete initialement introduits pour construire par iteration, des courbes ou des surfaces a partir de points de controle. Ils sont apparus comme etant un ingredient de base dans la definition d'analyses multiresolutions, avec comme application l'approximation et la compression des images. Dans la construction de courbes ou dans la compression d'images, la convergence du schema de subdivision vers une fonction continue, la regularite de cette fonction, la stabilite et l'ordre du schema sont des proprietes cruciales. Les schemas lineaires presentant une importante limitation (ils creent des oscillations au voisinage de forts gradients ou de discontinuite qui se traduit par des zones de flous pres des contours dans la compression d'images), on s'est alors interesse a des schemas non-lineaires. S'inscrivant dans la lignee des theories concernant les schemas non- lineaires, on a developpe dans ce travail des theoremes de convergence, de regularite, de stabilite et d'ordre pour une classe de schemas non-lineaires s'ecrivant sous la forme d'une somme d'un schema lineaire et d'une perturbation non-lineaire. Nous avons ensuite applique ces resultats a l'etude de proprietes de schemas non-lineaires existants, ou que nous avons contruits pour repondre au probleme d'oscillations ou aux problemes de regularite. Une premiere application concerne la compression d'images. On s'est propose d'etudier la stabilite de l'analyse multiresolution bidimensionnelle associee a cette classe de schemas non-lineaires, puis d'appliquer les theoremes etablis et d'observer numeriquement, les benifices obtenus par rapport a des analyses multiresolutions lineaires. Enfin, une deuxieme application concerne la construction d'operateurs aux differences finies ayant une erreur homogene sur des grilles non-uniformes, a partir un operateur donne et d'un schema de subdivision.

[1]  Nira Dyn,et al.  Convexity preservation of the four-point interpolatory subdivision scheme , 1999, Comput. Aided Geom. Des..

[2]  Marie-Laurence Mazure,et al.  Subdivision Schemes and Irregular Grids , 2004, Numerical Algorithms.

[3]  T. Yu,et al.  Smoothness Analysis of Nonlinear Subdivision Schemes of Homogeneous and Affine Invariant Type , 2005 .

[4]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  S. Mallat A wavelet tour of signal processing , 1998 .

[6]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[7]  A. Harten Multiresolution representation of data: a general framework , 1996 .

[8]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[9]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.

[10]  Joe Warren,et al.  Binary Subdivision Schemes for Functions over Irregular Knot Sequences , 1995 .

[11]  P. Oswald,et al.  Stability of Nonlinear Subdivision and Multiscale Transforms , 2010 .

[12]  Leif Kobbelt,et al.  A variational approach to subdivision , 1996, Comput. Aided Geom. Des..

[13]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[14]  Peter Oswald Smoothness of Nonlinear Median-Interpolation Subdivision , 2004, Adv. Comput. Math..

[15]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[16]  Byung-Gook Lee,et al.  Stationary subdivision schemes reproducing polynomials , 2006, Comput. Aided Geom. Des..

[17]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[18]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[19]  Francesc Aràndiga,et al.  Weighted ENO interpolation and applications , 2004 .

[20]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[21]  D. Levin,et al.  Analysis of asymptotically equivalent binary subdivision schemes , 1995 .

[22]  Basarab Matei Smoothness characterization and stability in nonlinear multiscale framework: theoretical results , 2005 .

[23]  Antonio Marquina,et al.  Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws , 1994, SIAM J. Sci. Comput..

[24]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[25]  Malcolm A. Sabin,et al.  A family of subdivision schemes with cubic precision , 2008, Comput. Aided Geom. Des..

[26]  Charles A. Micchelli,et al.  Using the refinement equation for the construction of pre-wavelets , 1991, Numerical Algorithms.

[27]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[28]  Basarab Matei Méthodes multirésolutions non-linéaires : applications au traitement d'image , 2002 .

[29]  Ruud van Damme,et al.  Shape Preserving Interpolatory Subdivision Schemes for Nonuniform Data , 2002, J. Approx. Theory.

[30]  Johannes Wallner,et al.  Log-exponential analogues of univariate subdivision schemes in Lie groups and their smoothness properties , 2007 .

[31]  Philipp Grohs,et al.  Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..

[32]  Francesc Aràndiga,et al.  Nonlinear multiscale decompositions: The approach of A. Harten , 2000, Numerical Algorithms.

[33]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[34]  Charles A. Micchelli,et al.  Nonlinear Stationary Subdivision , 1998 .

[35]  A. Harten ENO schemes with subcell resolution , 1989 .

[36]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[37]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[38]  Carolina Vittoria Beccari,et al.  An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control , 2007, Comput. Aided Geom. Des..

[39]  Francesc Aràndiga,et al.  Multiresolution Based on Weighted Averages of the Hat Function II: Nonlinear Reconstruction Techniques , 1998, SIAM J. Sci. Comput..

[40]  Nira Dyn,et al.  Approximation order of interpolatory nonlinear subdivision schemes , 2010, J. Comput. Appl. Math..

[41]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[42]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[43]  S. Jaffard Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .

[44]  Leif Kobbelt Using the Discrete Fourier Transform to Analyze the Convergence of Subdivision Schemes , 1998 .

[45]  Carolina Vittoria Beccari,et al.  A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..

[46]  Antonio Marquina,et al.  Power ENO methods: a fifth-order accurate weighted power ENO method , 2004 .

[47]  Nicolas Aspert Non-linear subdivision of univariate signals and discrete surfaces , 2003 .

[48]  Björn Sjögreen,et al.  Numerical experiments with the multiresolution scheme for the compressible Euler equations , 1995 .

[49]  Thierry BLUzAbstract SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .

[50]  P. Shunmugaraj,et al.  A non-stationary subdivision scheme for curve interpolation , 2008 .

[51]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[52]  David L. Donoho,et al.  Nonlinear Pyramid Transforms Based on Median-Interpolation , 2000, SIAM J. Math. Anal..

[53]  Peter J. Oswald Smoothness of nonlinear subdivision schemes , 2002 .

[54]  David Levin,et al.  Using Laurent polynomial representation for the analysis of non‐uniform binary subdivision schemes , 1999, Adv. Comput. Math..

[55]  Barna L. Bihari,et al.  Application of generalized wavelets: an adaptive multiresolution scheme , 1995 .

[56]  F. Kuijt Convexity preserving interpolation - stationary nonlinear subdivision and splines , 1998 .

[57]  Neil A. Dodgson,et al.  An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..

[58]  A. Harten,et al.  Multiresolution Based on Weighted Averages of the Hat Function I: Linear Reconstruction Techniques , 1998 .

[59]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[60]  Nira Dyn,et al.  Geometrically Controlled 4-Point Interpolatory Schemes , 2005, Advances in Multiresolution for Geometric Modelling.

[61]  Joe D. Warren,et al.  A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..

[62]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[63]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..