Shape recognition using eigenvalues of the Dirichlet Laplacian

The eigenvalues of the Dirichlet Laplacian are used to generate three different sets of features for shape recognition and classification in binary images. The generated features are rotation-, translation-, and size-invariant. The features are also shown to be tolerant of noise and boundary deformation. These features are used to classify hand-drawn, synthetic, and natural shapes with correct classification rates ranging from 88.9% to 99.2%. The classification was done using few features (only two features in some cases) and simple feedforward neural networks or minimum Euclidian distance. 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

[1]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[2]  H. Blum Biological shape and visual science (part I) , 1973 .

[3]  Eva-Marie Nosal,et al.  One Cannot Hear the Shape of a Drum , 2003 .

[4]  L. Zusne Visual perception of form , 1970 .

[5]  G. Strang,et al.  Fourier Analysis of the Finite Element Method in Ritz-Galerkin Theory , 1969 .

[6]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[7]  B. S. Manjunath,et al.  Drums and Curve Descriptors , 2004, BMVC.

[8]  R. Benguria,et al.  Proof of the Payne-Pólya-Weinberger conjecture , 1991 .

[9]  George E. Forsythe,et al.  Asymptotic lower bounds for the frequencies of certain polygonal membranes. , 1954 .

[10]  M. Protter Can one hear the shape of a drum? revisited , 1987 .

[11]  Hans F. Weinberger,et al.  Upper and lower bounds for eigenvalues by finite difference methods , 1956 .

[12]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[13]  Hans F. Weinberger,et al.  Lower bounds for higher eigenvalues by finite difference methods. , 1958 .

[14]  J. Kuttler Finite Difference Approximations for Eigenvalues of Uniformly Elliptic Operators , 1970 .

[15]  Isaac Fried,et al.  Superaccurate finite element eigenvalue computation , 2004 .

[16]  J. Kuttler,et al.  EIGENVALUES OF THE LAPLACIAN ON REGULAR POLYGONS AND POLYGONS RESULTING FROM THEIR DISECTION , 1999 .

[17]  J. Kuttler,et al.  A fourth-order finite-difference approximation for the fixed membrane eigenproblem , 1971 .

[18]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[19]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[20]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[22]  M. Rubinoff,et al.  Numerical solution of differential equations , 1954, AIEE-IRE '54 (Eastern).

[23]  Theodosios Pavlidis,et al.  A review of algorithms for shape analysis , 1978 .

[24]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[25]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[26]  Maeve L. McCarthy,et al.  Isospectral membranes: a connection between shape and density , 2004 .

[27]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[28]  R. Hetherington The Perception of the Visual World , 1952 .

[29]  G. Pólya,et al.  ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .

[30]  D. Marr A theory for cerebral neocortex , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  Tobin A. Driscoll,et al.  Eigenmodes of Isospectral Drums , 1997, SIAM Rev..

[32]  George E. Forsythe,et al.  Asymptotic lower bounds for the fundamental frequency of convex membranes , 1955 .

[33]  Gilbert Strang,et al.  The Laplacian eigenvalues of a polygon , 2004 .