Mixed finite elements for elasticity on quadrilateral meshes

We present stable mixed finite elements for planar linear elasticity on general quadrilateral meshes. The symmetry of the stress tensor is imposed weakly and so there are three primary variables, the stress tensor, the displacement vector field, and the scalar rotation. We develop and analyze a stable family of methods, indexed by an integer r ≥ 2 and with rate of convergence in the L2 norm of order r for all the variables. The methods use Raviart–Thomas elements for the stress, piecewise tensor product polynomials for the displacement, and piecewise polynomials for the rotation. We also present a simple first order element, not belonging to this family. It uses the lowest order BDM elements for the stress, and piecewise constants for the displacement and rotation, and achieves first order convergence for all three variables.

[1]  M. Fortin,et al.  Dual hybrid methods for the elasticity and the Stokes problems: a unified approach , 1997 .

[2]  D. Arnold,et al.  RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .

[3]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[4]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[5]  Douglas N. Arnold,et al.  Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..

[6]  M. Fortin,et al.  Reduced symmetry elements in linear elasticity , 2008 .

[7]  B. J. Hartz,et al.  An equilibrium stress field model for finite element solutions of two-dimensional elastostatic problems , 1968 .

[8]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[9]  Michel Fortin,et al.  Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .

[10]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[11]  Numedsche,et al.  A Family of Mixed Finite Elements for the Elasticity Problem , 2022 .

[12]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[13]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[14]  Gerard Awanou,et al.  Rectangular mixed elements for elasticity with weakly imposed symmetry condition , 2010, Adv. Comput. Math..

[15]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[16]  Claes Johnson,et al.  Some equilibrium finite element methods for two-dimensional elasticity problems , 1978 .

[17]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[18]  R. S. Falk Finite Element Methods for Linear Elasticity , 2008 .

[19]  D. Arnold,et al.  Defferential Complexes and Stability of Finite Element Methods II: The Elasticity Complex , 2006 .

[20]  R. Stenberg On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .

[21]  Bernardo Cockburn,et al.  A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..

[22]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[23]  M. Fortin Old and new finite elements for incompressible flows , 1981 .

[24]  J. Thomas,et al.  Equilibrium finite elements for the linear elastic problem , 1979 .

[25]  Jay Gopalakrishnan,et al.  A Second Elasticity Element Using the Matrix Bubble , 2012 .

[26]  M. E. Morley A family of mixed finite elements for linear elasticity , 1989 .