Massive star formation in galaxies: radiative transfer models of the UV to millimetre emission of starburst galaxies

We present illustrative models for the UV to millimeter emission of starburst galaxies which are treated as an ensemble of optically thick giant molecular clouds (GMCs) centrally illuminated by recently formed stars. The models follow the evolution of the GMCs due to the ionization-induced expansion of the HII regions and the evolution of the stellar population within the GMC according to the Bruzual & Charlot stellar population synthesis models. The effect of transiently heated dust grains/PAHs to the radiative transfer, as well as multiple scattering, is taken into account. The expansion of the HII regions and the formation of a narrow neutral shell naturally explains why the emission from PAHs dominates over that from hot dust in the near to mid-IR, an emerging characteristic of the infrared spectra of starburst galaxies. The models allow us to relate the observed properties of a galaxy to its age and star formation history. We find that exponentially decaying 10^7-10^8 yrs old bursts can explain the IRAS colours of starburst galaxies. The models are also shown to account satisfactorily for the multiwavelength data on the prototypical starburst galaxy M82 and NGC6090, a starburst galaxy recently observed by ISO. In M82 we find evidence for two bursts separated by 10^7yrs. In NGC6090 we find that at least part of the far-IR excess may be due to the age of the burst (6.4 x 10^7yrs). We also make predictions about the evolution of the luminosity of starbursts at different wavelengths which indicate that far-IR surveys may preferentially detect older starbursts than mid-IR surveys.

[1]  L. Wisotzki,et al.  FAUST observations in the Fourth Galactic Quadrant , 1999, astro-ph/9912476.

[2]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[3]  M. A. Malkan,et al.  ISO LWS Spectroscopy of M82: A Unified Evolutionary Model , 1998, astro-ph/9810188.

[4]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[5]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[6]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[7]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[8]  Hans Ulrik Nørgaard-Nielsen,et al.  Observations of the Hubble Deep Field with the Infrared Space Observatory V. Spectral energy distributions starburst models and star formation history , 1997 .

[9]  C. Woodward,et al.  The Intrinsic Properties of the Stellar Clusters in the M82 Starburst Complex: Propagating Star Formation? , 1997 .

[10]  D. Calzetti,et al.  Dust in Starburst Galaxies , 1997, astro-ph/9705043.

[11]  René Doyon,et al.  Spectroscopy of Luminous Infrared Galaxies at 2 Microns. III. Analysis for Galaxies with log (LIR/L☉) ≳ 11.2 , 1997 .

[12]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[13]  B. Greenawalt,et al.  Far-Infrared Radiation from Dust Heated by the Interstellar Radiation Field in Spiral Galaxies , 1996 .

[14]  C. Leitherer,et al.  Starbursts and Star Clusters in the Ultraviolet , 1995, astro-ph/9509038.

[15]  K. Lo,et al.  Locations of Starbursts in M82 , 1995 .

[16]  W. Colley,et al.  Hubble Space Telescope Imaging of Super Star Clusters in M82 , 1995 .

[17]  T. Ichikawa,et al.  Near-Infrared Wide-Field Surface Photometry of M82 , 1995 .

[18]  M. Rowan-Robinson,et al.  Dusty discs in active galactic nuclei , 1995 .

[19]  B. Whitmore,et al.  Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies , 1995 .

[20]  E. I. Robson,et al.  The submillimetre structure of the starburst nucleus in M82: a diffraction-limited 450-μm map , 1994 .

[21]  Dinshaw S. Balsara,et al.  DYNAMICS AND X-RAY EMISSION OF A GALACTIC SUPERWIND INTERACTING WITH DISK AND HALO GAS , 1994 .

[22]  P. Wilkinson,et al.  The structure of young supernova remnants in M82 , 1994 .

[23]  M. Rowan-Robinson,et al.  Multigrain dust cloud models of compact HII regions. , 1994 .

[24]  M. Rowan-Robinson,et al.  Multigrain dust cloud models of starburst and Seyfert galaxies , 1993 .

[25]  G. Rieke,et al.  Starburst Modeling of M82: Test Case for a Biased Initial Mass Function , 1993 .

[26]  G. Rieke,et al.  M82: The saga continues , 1993 .

[27]  R. Siebenmorgen The Spectral Energy Distribution of Star-forming Regions , 1993 .

[28]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[29]  D. Gezari,et al.  High-resolution 12.4 micron images of the starburst region in M82 , 1992 .

[30]  M. Joy,et al.  Infrared Imaging of M82: a Starburst in an Edge-On Barred Galaxy , 1991 .

[31]  P. Roche,et al.  An atlas of mid-infrared spectra of galaxy nuclei , 1991 .

[32]  M. Rowan-Robinson,et al.  Interstellar dust galaxies , 1992 .

[33]  M. Rowan-Robinson,et al.  Radiative transfer in axisymmetric dust clouds , 1990, Monthly Notices of the Royal Astronomical Society.

[34]  M. Wolfire,et al.  The Infrared Emission from Dust Surrounding Newly Formed O Stars , 1990 .

[35]  P. Bodenheimer,et al.  On the formation and expansion of H II regions , 1990 .

[36]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[37]  B. Draine,et al.  Temperature fluctuations in interstellar grains. I. Computational method and sublimation of small grains , 1989 .

[38]  Michael Rowan-Robinson,et al.  Models for infrared emission from IRAS galaxies , 1989 .

[39]  J. Puget,et al.  A New Component of the Interstellar Matter: Small Grains and Large Aromatic Molecules , 1989 .

[40]  P. Bodenheimer,et al.  Large-Scale Expanding Superstructures in Galaxies , 1988 .

[41]  E. Dwek,et al.  Large-scale Galactic dust morphology and physical conditions from IRAS observations , 1987 .

[42]  Y. Taniguchi,et al.  NGC 3928: a highly bulge-dominated compact spiral galaxy , 1987 .

[43]  H. Boehringer,et al.  Characteristics of old neutron stars in dense interstellar clouds , 1987 .

[44]  J. Mathis Interstellar dust and extinction , 1987 .

[45]  R. McCray,et al.  Supershells and propagating star formation , 1986 .

[46]  B. Elmegreen,et al.  The largest molecular cloud complexes in the first galactic quadrant , 1986 .

[47]  B. Jones,et al.  Position-dependent infrared spectroscopy of M 82 : 100,000 Orion nebulae ? , 1984 .

[48]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[49]  M. Rowan-Robinson,et al.  Radiative transfer in dust clouds. I. Hot-centered clouds associated with regions of massive star formation , 1980 .

[50]  Rodger I. Thompson,et al.  The nature of the nuclear sources in M82 and NGC 253 , 1980 .

[51]  D. Harper,et al.  Galaxies and far-infrared emission , 1980 .

[52]  C. Heiles H I shells and supershells , 1979 .

[53]  Blair D. Savage,et al.  Observed Properties of Interstellar Dust , 1979 .

[54]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[55]  K. Taylor,et al.  M82: the exploding galaxy? , 1978, Nature.

[56]  R. Joyce,et al.  2 to 8 micron spectrophotometry of M82. , 1977 .

[57]  A. Sandage,et al.  The Stellar Content and Distance of the Galaxy NGC 2403 IN the M81 Group , 1968 .

[58]  H. L. Johnson Infrared Photometry of Galaxies , 1966 .