Nonsmooth multiobjective programming with quasi-Newton methods

This paper proposes a new algorithm to solve nonsmooth multiobjective programming. The algorithm is a descent direction method to obtain the critical point (a necessary condition for Pareto optimality). We analyze both global and local convergence results under some assumptions. Numerical tests are also given.

[1]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[2]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[3]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[4]  Mark Goh,et al.  Multiobjective DC programs with infinite convex constraints , 2014, J. Glob. Optim..

[5]  Ricardo H. C. Takahashi,et al.  Multicriteria optimization with a multiobjective golden section line search , 2010, Mathematical Programming.

[6]  Masao Fukushima,et al.  On the Global Convergence of the BFGS Method for Nonconvex Unconstrained Optimization Problems , 2000, SIAM J. Optim..

[7]  Adil M. Bagirov,et al.  An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization , 2008, Math. Methods Oper. Res..

[8]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[9]  Mark Goh,et al.  Quasi-Newton methods for solving multiobjective optimization , 2011, Oper. Res. Lett..

[10]  Yezid Donoso,et al.  Multi-Objective Optimization in Computer Networks Using Metaheuristics , 2007 .

[11]  Bing Liang,et al.  Trust region methods for solving multiobjective optimisation , 2013, Optim. Methods Softw..

[12]  Joshua D. Knowles,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Orizon Pereira Ferreira,et al.  A subgradient method for multiobjective optimization , 2013, Comput. Optim. Appl..