Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli.

Interest continues to increase in the use of folding modulators to overcome problems with heterologous protein folding in Escherichia coli. Currently, this approach, though highly successful with a number of individual proteins, remains a somewhat hit-and-miss affair. Ongoing research directed at unraveling the precise role and specificity of these folding modulators should generate a clearer understanding of the potential and limitations of overexpressing folding catalysts in vivo. This will facilitate the development, in the not too distant future, of a more structured and rational approach to improving the folding of heterologous gene products in E. coli.

[1]  George Georgiou,et al.  Construction and Characterization of a Set of E. coli Strains Deficient in All Known Loci Affecting the Proteolytic Stability of Secreted Recombinant Proteins , 1994, Bio/Technology.

[2]  J. King,et al.  Amino acid substitutions influencing intracellular protein folding pathways , 1992, FEBS letters.

[3]  D. N. Collier Expression of Escherichia coli SecB in Bacillus subtilis facilitates secretion of the SecB-dependent maltose-binding protein of E. coli , 1994, Journal of bacteriology.

[4]  P. Model,et al.  Role of an Escherichia coli stress-response operon in stationary-phase survival. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  W. Dower,et al.  Membrane insertion defects caused by positive charges in the early mature region of protein pIII of filamentous phage fd can be corrected by prlA suppressors , 1994, Journal of bacteriology.

[6]  F. Blattner,et al.  Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. , 1993, Gene.

[7]  D. Belin,et al.  A pathway for disulfide bond formation in vivo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[8]  L. Randall,et al.  High selectivity with low specificity: how SecB has solved the paradox of chaperone binding. , 1995, Trends in biochemical sciences.

[9]  W. A. Bridger,et al.  Folding and assembly of the Escherichia coli succinyl-CoA synthetase heterotetramer without participation of molecular chaperones. , 1992, Biochemistry.

[10]  F. Neidhardt,et al.  Stress response of Escherichia coli to elevated hydrostatic pressure , 1993, Journal of bacteriology.

[11]  A. Robins,et al.  Secretion of eukaryotic growth hormones in Escherichia coli is influenced by the sequence of the mature proteins. , 1994, Gene.

[12]  R. Wetzel,et al.  Breakdown in the relationship between thermal and thermodynamic stability in an interleukin-1 beta point mutant modified in a surface loop. , 1993, Protein engineering.

[13]  P. Blum,et al.  Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli , 1992, Journal of bacteriology.

[14]  M. Inouye,et al.  The cold‐shock response — a hot topic , 1994, Molecular microbiology.

[15]  B. Seaton,et al.  A gene encoding a DnaK/hsp70 homolog in Escherichia coli. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Fischer,et al.  Peptidyl-prolyl cis/trans isomerases and their effectors , 1994 .

[17]  H. Burtscher,et al.  Expression of human placental alkaline phosphatase in Escherichia coli. , 1994, Protein expression and purification.

[18]  B Demple,et al.  Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene , 1992, Journal of bacteriology.

[19]  A. Plückthun,et al.  Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB). , 1995, Gene.

[20]  P O Olins,et al.  Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. , 1992, The Journal of biological chemistry.

[21]  T. Nyström,et al.  Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest , 1994, Molecular microbiology.

[22]  G. Lorimer,et al.  GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli , 1989, Nature.

[23]  J. Ghuysen,et al.  Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli. , 1994, The Biochemical journal.

[24]  J. Pogliano,et al.  SecD and SecF facilitate protein export in Escherichia coli. , 1994, The EMBO journal.

[25]  E. Söderlind,et al.  Intra- and extracellular expression of an scFv antibody fragment in E. coli: effect of bacterial strains and pathway engineering using GroES/L chaperonins. , 1994, BioTechniques.

[26]  A. Plückthun,et al.  Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli. Influence of folding catalysts. , 1994, Journal of molecular biology.

[27]  Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Walsh,et al.  Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. , 1993, The Journal of biological chemistry.

[29]  G. Reinhart,et al.  Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore , 1994, Cell.

[30]  P. Blum,et al.  DnaK-Mediated Alterations in Human Growth Hormone Protein Inclusion Bodies , 1992, Bio/Technology.

[31]  F. Jacob-Dubuisson,et al.  PapD and superfamily of periplasmic immunoglobulin-like pilus chaperones. , 1993, Advances in protein chemistry.

[32]  B. Dobberstein On the beaten pathway , 1994, Nature.

[33]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[34]  R. Hockney Recent developments in heterologous protein production in Escherichia coli. , 1994, Trends in biotechnology.

[35]  J. Barbero,et al.  DnaK/DnaJ supplementation improves the periplasmic production of human granulocyte-colony stimulating factor in Escherichia coli. , 1995, Biochemical and biophysical research communications.

[36]  D. Belin,et al.  Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. , 1993, Science.

[37]  Y. Fujita,et al.  SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. , 1993, The EMBO journal.

[38]  R. Wetzel,et al.  Inclusion body formation by interleukin‐1β depends on the thermal sensitivity of a folding intermediate , 1994, FEBS letters.

[39]  G. Dale,et al.  Increased solubility of trimethoprim-resistant type S1 DHFR from Staphylococcus aureus in Escherichia coli cells overproducing the chaperonins GroEL and GroES. , 1994, Protein engineering.

[40]  R. Jaenicke,et al.  Response of bacteria and fungi to high‐pressure stress as investigated by two‐dimensional polyacrylamide gel electrophoresis , 1994, Electrophoresis.

[41]  G. Georgiou,et al.  The folding of bovine pancreatic trypsin inhibitor in the Escherichia coli periplasm. , 1994, The Journal of biological chemistry.

[42]  M. Kleerebezem,et al.  Expression of the pspA gene stimulates efficient protein export in Escherichia coli , 1993, Molecular microbiology.

[43]  G von Heijne,et al.  Positively charged residues influence the degree of SecA dependence in protein translocation across the E. coli inner membrane , 1994, FEBS letters.

[44]  T. Mizuno,et al.  A study of the double mutation of dnaJ and cbpA, whose gene products function as molecular chaperones in Escherichia coli , 1995, Journal of bacteriology.

[45]  E. Reinherz,et al.  Structure of the glycosylated adhesion domain of human T lymphocyte glycoprotein CD2. , 1993, Structure.

[46]  W. B. Snyder,et al.  Enhanced export of beta-galactosidase fusion proteins in prlF mutants is Lon dependent , 1992, Journal of bacteriology.

[47]  P. Caspers,et al.  Overproduction of bacterial chaperones improves the solubility of recombinant protein tyrosine kinases in Escherichia coli. , 1994, Cellular and molecular biology.

[48]  T. Mizuno,et al.  An analogue of the DnaJ molecular chaperone whose expression is controlled by σS during the stationary phase and phosphate starvation in Escherichia coli , 1994, Molecular microbiology.

[49]  R. Glockshuber,et al.  In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA). , 1993, The Journal of biological chemistry.

[50]  H. Mori,et al.  Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli , 1994, Journal of bacteriology.

[51]  I. Holland,et al.  Protein secretion pathways in Escherichia coli , 1994 .

[52]  A. Plückthun,et al.  The Effect of Folding Catalysts on the In Vivo Folding Process of Different Antibody Fragments Expressed in Escherichia coli , 1993, Bio/Technology.

[53]  H. Gilbert Protein chaperones and protein folding. , 1994, Current opinion in biotechnology.

[54]  A. Plückthun,et al.  Engineered turns of a recombinant antibody improve its in vivo folding. , 1995, Protein engineering.

[55]  J. Gierse,et al.  Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli , 1992, Journal of bacteriology.

[56]  J E Bailey,et al.  Co‐overexpression of prlF Increases Cell Viability and Enzyme Yields in Recombinant Escherichia coli Expressing Bacillus stearothermophilus α‐Amylase , 1995, Biotechnology progress.

[57]  A. Plückthun,et al.  Protein folding in the periplasm of Escherichia coli , 1994, Molecular microbiology.

[58]  J. Barbero,et al.  Increasing the Efficiency of Protein Export in Escherichia coli , 1994, Bio/Technology.

[59]  F. Hartl,et al.  Molecular chaperones in cellular protein folding. , 1994, Nature.

[60]  D. Y. Thomas,et al.  Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. , 1994, Trends in biochemical sciences.

[61]  C. Georgopoulos,et al.  The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. , 1994, The EMBO journal.

[62]  H. Crooke,et al.  The biogenesis of c‐type cytochromes in Escherichia coli requires a membrane‐bound protein, DipZ, with a protein disulphide isomerase‐like domain , 1995, Molecular microbiology.

[63]  D. Kern,et al.  Reassessment of the putative chaperone function of prolyl‐cis/trans‐isomerases , 1994, FEBS letters.

[64]  Phage Tailspike Protein: A fishy tale of protein folding , 1994, Current Biology.

[65]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[66]  L. Alksne,et al.  A mutation in either dsbA or dsbB, a gene encoding a component of a periplasmic disulfide bond-catalyzing system, is required for high-level expression of the Bacteroides fragilis metallo-beta-lactamase, CcrA, in Escherichia coli , 1995, Journal of bacteriology.

[67]  J. King,et al.  Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro. , 1993, The Journal of biological chemistry.

[68]  R. Schekman Translocation gets a push , 1994, Cell.

[69]  W. Wickner,et al.  SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. , 1994, The EMBO journal.

[70]  G. Dale,et al.  Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. , 1994, Protein engineering.

[71]  J. Bardwell,et al.  Building bridges: disulphide bond formation in the cell , 1994, Molecular microbiology.

[72]  T. Silhavy,et al.  Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli , 1990, Nature.